934 resultados para Spores, fungal
Resumo:
Bibliography: p. 53-55.
Resumo:
Adult diamondback moths (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), inoculated with the fungus Zoophthora radicans, were released within a large field cage containing DBM-infested potted broccoli plants. Larvae and pupae on exposed and caged control plants were examined on five occasions over the next 48 days for evidence of Z. radicans infection. Infected larvae were first detected on exposed plants 4 days after the initial release of adults, and after 48 days the infection level reached 79%. Aerially borne conidia were a factor in transmission of the fungus. Infection had no effect on possible losses of larval and adult cadavers due to scavengers in field crops. In a trial to measure the influence of infection on dispersal, twice as many non-infected as infected males were recaptured in pheromone traps, although the difference in cumulative catch only became significant 3 days after release of the males. In a separate experiment, when adult moths were inoculated with Beauveria bassiana conidia and released into the field cage, DBM larvae collected from 37 of 96 plants sampled 4 days later subsequently died from B. bassiana infection. The distribution of plants from which the infected larvae were collected was random, but the distribution of infected larvae was clustered within the cage. These findings suggest that the auto-dissemination of fungal pathogens may be a feasible strategy for DBM control, provided that epizootics can be established and maintained when DBM population densities are low.
Resumo:
Sequences of small-subunit rRNA genes were determined for Dermocystidium percae and a new Dermocystidium species established as D. fennicum sp. n. from perch in Finland. On the basis of alignment and phylogenetic analysis both species were placed in the Dermocystidium-Rhinosporidium clade within Ichthyosporea, D. fennicum as a specific sister taxon to D. salmonis, and D. percae in a clade different from D. fennicum. The ultrastructures of both species well agree with the characteristics approved within Ichthyosporea: walled spores produce uniflagellate zoospores lacking a collar or cortical alveoli. The two Dermocystidium species resemble Rhinosporidium seeberi (as described by light microscope), a member of the nearest relative genus, but differ in that in R. seeberi plasmodia have thousands of nuclei discernible, endospores are discharged through a pore in the wall of the sporangium, and zoospores have not been revealed. The plasmodial stages of both Dermocystidium species have a most unusual behaviour of nuclei, although we do not actually know how the nuclei transform during the development. Early stages have an ordinary nucleus with double, fenestrated envelope. In middle-aged plasmodia ordinary nuclei seem to be totally absent or are only seldom discernible until prior to sporogony, when rather numerous nuclei again reappear. Meanwhile single-membrane vacuoles with coarsely granular content, or complicated membranous systems were discernible. Ordinary nuclei may be re-formed within these vacuoles or systems. In D. percae small canaliculi and in D. fennicum minute vesicles may aid the nucleus-cytoplasm interchange of matter before formation of double-membrane-enveloped nuclei. Dermocystidium represents a unique case when a stage of the life cycle of an eukaryote lacks a typical nucleus.
Resumo:
A yeast cDNA expression library was screened to identify genes and cellular processes that influence fungal sensitivity to a plant antimicrobial peptide. A plasmid-based, GAL1 promoter-driven yeast cDNA expression library was introduced into a yeast genotype susceptible to the antimicrobial peptide MiAMP1 purified from Macadamia integrifolia. Following a screen of 20,000 cDNAs, three yeast cDNAs were identified that reproducibly provided transformants with galactose-dependent resistance to MiAMP1. These cDNAs encoded a protein of unknown function, a component (VMA11) of the vacuolar H+-ATPase and a component (cytochrome c oxidase subunit VIa) of the mitochondrial electron transport chain, respectively. To identify genes that increased sensitivity to MiAMP1, the yeast cDNA expression library was introduced into a yeast mutant with increased resistance to MiAMP1. From 11,000 cDNAs screened, two cDNA clones corresponding to a ser/thr kinase and a ser/thr phosphatase reproducibly increased MiAMP1 susceptibility in the mutant in a galactose-dependent manner. Deletion mutants were available for three of the five genes identified but showed no change in their sensitivity to MiAMP1, indicating that these genes could not be detected by screening of yeast deletion mutant libraries. Yeast cDNA expression library screening therefore provides an alternative approach to gene deletion libraries to identify genes that can influence the sensitivity of fungi to plant antimicrobial peptides.
Resumo:
A cDNA corresponding to a transcript induced in culture by N starvation, was identified in Colletotrichum gloeosporioides by a differential hybridisation strategy. The cDNA comprised 905 bp and predicted a 215 aa protein; the gene encoding the cDNA was termed CgDN24. No function for CgDN24 could be predicted by database homology searches using the cDNA sequence and no homologues were found in the sequenced fungal genomes. Transcripts of CgDN24 were detected in infected leaves of Stylosanthes guianensis at stages of infection that corresponded with symptom development. The CgDN24 gene was disrupted by homologous recombination and this led to reduced radial growth rates and the production of hyphae with a hyperbranching phenotype. Normal sporutation was observed, and following conidia inoculation of S. guianensis, normal disease development was obtained. These results demonstrate that CgDN24 is necessary for normal hyphal development in axenic culture but dispensable for phytopathogenicity. (c) 2005 Elsevier GmbH. Alt rights reserved.
Resumo:
Microscopic identification of organic residues in situ on the surface of archaeological artefacts is an established procedure. Where soil components morphologically similar to use-residue types exist within the soil, however, there remains the possibility that these components may be misidentified as authentic residues. The present study investigates common soil components known as conidia, fungal spores which may be mistaken for starch grains. Conidia may exhibit the rotating extinction cross under cross-polarised light commonly diagnostic of starch, and may be morphologically indistinguishable from small starch grains, particularly at the limits of microscope resolution. Conidia were observed on stone and ceramic archaeological artefacts from Honduras, Palau and New Caledonia, as well as experimental artefacts from Papua New Guinea. The findings act as a caution that in situ analysis of residues, and especially of those less than 5 mu m in size, may be subject to misidentification. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The naturally occurring reactive electrophilic species 12-oxo-phytodienoic acid (12-oxo-PDA) is a potent antifungal agent, whereas the plant growth regulator jasmonic acid, which is synthesized from 12-oxo-PDA, is ineffective. To address what structural features of the molecule endow it with antifungal activity, we synthesized a series of molecular mimics of 12-oxo-PDA varying in the length of the alkyl chain at its C-4 ring position. The octyl analogue (4-octyl cyclopentenone) was the most effective at suppressing spore germination and subsequent mycelial growth of a range of fungal pathogens and was particularly effective against Cladosporium herbarum and Botrytis cinerea, with minimum fungicidal concentrations in the range 100-200 µM. Introduction of a carboxyl group to the end of the chain, mimicking natural fatty acids, markedly reduced antifungal efficacy. Electrolyte leakage, indicative of membrane perturbation, was evident in both C. herbarum and B. cinerea exposed to 4-octyl cyclopentenone. Lipid composition analysis of the fungal spores revealed that those species with a high oil content, namely Fusarium oxysporum and Alternaria brassicicola, were less sensitive to 4-octyl cyclopentenone. The comparable hydrophobicity of 4-octyl cyclopentenone and 12-oxo-PDA accounts for the similar spore suppression activity of these two compounds. The relative ease of synthesis of 4-octyl cyclopentenone makes it an attractive compound for potential use as an antifungal agent. © 2011 SGM.