967 resultados para Spine biomechanics
Resumo:
Purpose: Children`s postural alignment undergoes many adjustments due to the changes in body proportions during the stages of growth. The objective of this study was to quantitatively characterize and analyze spinal postural standards in 7- and 8-year-old children to verify which of the differences found were correlated to age and sex. Methods: Two hundred thirty public school students (Amparo, Sao Paulo, Brazil) aged 7 to 8 years were divided into groups according to postural alignment, which were further subdivided by sex and age, for comparison. Digital photos of upright Subjects were analyzed to evaluate posture. Lumbar and thoracic curvature, pelvic inclination, head posture, and lateral spine deviation were measured using CorelDraw (Ottawa, Canada) software guidelines and bone landmarks. Descriptive statistics and analysis of variance data analysis were utilized to verify differences among the groups. This was a cross-sectional, descriptive study. Results: Mean values for the variables analyzed were calculated. For lumbar lordosis, 7-year-old boys showed 38.49 degrees +/- 15.32 degrees in comparison to all other groups (42.29 degrees +/- 7.13 degrees). For thoracic kyphosis, the 7-year-old children presented 28.07 degrees +/- 7.73 degrees. and the 8-year-olds 30.32 degrees +/- 7.73 degrees. Pelvic inclination presented a mean value of 15.82 degrees +/- 5.46 degrees and single lateral spine deviation mean value of 3.48 degrees +/- 2.12 degrees. Conclusion: For the sample studied, differences based on sex and age were found for some of the body segments analyzed. The values found in this study may contribute to improved physiotherapeutic treatment when associated with other aspects of the clinical assessment and symptomatology. (J Manipulative Physiol Ther 2009;32: 154-159)
Resumo:
Introduction The perimedullary arteriovenous fistulas are located on the pial surface and are usually supplied by spinal medullary arteries, that is, either by the anterior or posterior spinal arteries, with no intervening nidus between the feeder arteries and the venous drainage. The clinical findings are, more commonly, caused by progressive radiculomedullary ischemic processes secondary to steal vascular mechanism. As the vascular supply to the spinal cord and to the arteriovenous fistulas (AVF) is not shared with one another, the vascular steal phenomenon cannot be implicated in this case`s physiopathology. Most probably, the mass effect caused by the giant venous dilatation was the pathophysiological mechanism involved in this lesion Case report The authors describe the case of a 6-year-old girl with an intradural ventral arteriovenous fistula, with a giant venous dilatation, fed directly by L2 and L3 radiculomedullary arteries at the conus medullaris. There was no arterial supply to the fistula from the anterior or posterior spinal arteries. Selective spinal angiography showed an arteriovenous fistula supplied directly by two radiculomedullary arteries, with a large draining vein caudally. Interposing the arterial and venous vessels was a giant venous aneurysmal dilatation located ventral to the conus medullaris and extending from L3 to T6. The patient was successfully treated by a surgical approach through a laminotomy from L3 to T11. Conclusion The type IV-C spinal arteriovenous malformations or perimedullary AVFs are rare lesions predominately described at the conus medullaris with various types of angio-architecture and controversial treatment.
Resumo:
Purpose: Intervertebral cervical disc herniation (CDH) is a relatively common disorder that can coexist with degenerative changes to worsen cervicogenic myelopathy. Despite the frequent disc abnormalities found in asymptomatic populations, magnetic resonance imaging (MRI) is considered excellent at detecting cervical spine myelopathy (CSM) associated with disc abnormality. The objective of this study was to investigate the intra- and inter-observer reliability of MRI detection of CSM in subjects who also had co-existing intervertebral disc abnormalities. Materials and methods: Seven experienced radiologists reviewed twice the MRI of 10 patients with clinically and/or imaging determined myelopathy. MRI assessment was performed individually, with and without operational guidelines. A Fleiss Kappa statistic was used to evaluate the intra- and inter-observer agreement. Results: The study found high intra-observer percent agreement but relatively low Kappa values on selected variables. Inter-observer reliability was also low and neither observation was improved with operational guidelines. We believe that those low values may be associated with the base rate problem of Kappa. Conclusion: In conclusion, this study demonstrated high intra-observer percent agreement in MR examination for intervertebral disc abnormalities in patients with underlying cervical myelopathy, but differing levels of intra- and inter-observer Kappa agreement among seven radiologists. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: To develop a new endoscopic approach to the correction of a myelomeningocele-like defect in fetal sheep. Methods: The fetuses of 9 pregnant ewes, with an average gestational age of 115 days, were subjected to a 3.0 x 2.0 cm removal of the skin over the lumbar spine, performed through hysterotomy. The uterus was closed, and three 5-mm endoscopic cannulas, without valve mechanisms, were inserted. In the pilot phase (2 animals), we initially worked exclusively in the amniotic fluid space. In the study phase, we partially withdrew the fetus from the amniotic fluid to completely expose its back. By simply allowing air to enter the amniotic cavity (without gas injection), a working space was created using a uterine lift device. The skin around the defect was dissected, and a biosynthetic cellulose material was applied to cover the area. A continuous suture of the skin was performed to completely hide the material. Results: The combined air/fluid space allowed the skin to be successfully closed in 6 out of 7 cases in the study phase. All fetuses were alive at the end of the procedures. Time to complete the endoscopic part of the procedure fell from 3 to 1 h by the end of this series. Premature birth occurred in 2 of the 4 cases allowed to continue with the pregnancy. Conclusion: A new gasless fetoscopic surgery technique was developed as an alternative to current techniques used for fetal endoscopic surgery. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
An asymptomatic 48-year-old woman presented to our hospital with a tumor of the rib incidentally diagnosed on a chest roentgenogram. The patient was investigated and underwent tumor resection of the chest wall. The pathologic study revealed that it was cavernous hemangioma. This tumor of the bone is a distinctly uncommon benign vascular tumor, generally occurring in the spine or skull. Hemangiomas involving the rib are even more rare, with only 22 cases described in the literature. However, we suggest that this tumor of the rib should be considered in the differential diagnosis, principally in asymptomatic patients. (Ann Thorac Surg 2011;91:595-6) (C) 2011 by The Society of Thoracic Surgeons
Resumo:
The biomechanics of the sacroiliac joint makes the pelvic segment responsible for proper weight distribution between lower extremities; however, it is known to be susceptible to altered mobility. The objective of this study was to analyze baropodometric responses following thrust manipulation on subjects with sacroiliac joint restrictions. Twenty asymptomatic subjects were submitted to computerized baropodometric analysis before, after, and seven days following sacroiliac manipulation. The variables peak pressure and contact area were obtained at each of these periods as the average of absolute values of the difference between the right and left foot based on three trials. Data revealed significant reduction only in peak pressure immediately after manipulation and at follow-up when compared to pre-manipulative values (p < 0.05). Strong correlation was found between the dominant foot and the foot with greater contact area (r - 0.978), as well as between the side of joint restriction and the foot with greater contact area (r = 0.884). Weak correlation was observed between the dominant foot and the foot with greater peak pressure (r = 0.501), as well as between the side of joint restriction and the foot with greater peak pressure (r = 0.694). The results suggest that sacroiliac joint manipulation can influence peak pressure distribution between feet, but contact area does not seem to be related to the biomechanical aspects addressed in this study. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To introduce a new coupling system between screw driver and interference screw, and biomechanical tests that validate the safety of its application. Methods: The new system was submitted to biomechanical torsion assays. Two types of analysis were performed: maximum torque of manual insertion of the screws into bovine bone; destructive assays of torsion of the system using an INSTRON 55MT machine. The same tests were also performed on a control group, using a commercially available interference screw coupling system (Acufex (R)). Results: In the tests on manual insertion of screws in bovine femurs, the average values found with a digital torque meter were 1.958 N/m for Acufex (R) and 2.563 N/m for FMRP. Considering p>0.05, there were no statistical differences between the two groups (p=0.02) in the values for maximum torque of insertion, in the two systems studied. The average values for maximum torque of torsion resisted by the screw were 15N/m for the Acufex (R) screw and 13N/m for the FMRP screw, again with no statistical differences between the two groups (p>0.05). In the evaluation of angular deformation, there was also no significant difference between the two screw types (p=0.15). Conclusion: The new coupling system for interference screws developed at FMRP-USP revealed a torsion resistance that is comparable with the system already available on the market and regulated for international use.
Resumo:
BACKGROUND CONTEXT: The vertebral spine angle in the frontal plane is an important parameter in the assessment of scoliosis and may be obtained from panoramic X-ray images. Technological advances have allowed for an increased use of digital X-ray images in clinical practice. PURPOSE: In this context, the objective of this study is to assess the reliability of computer-assisted Cobb angle measurements taken from digital X-ray images. STUDY DESIGN/SETTING: Clinical investigation quantifying scoliotic deformity with Cobb method to evaluate the intra- and interobserver variability using manual and digital techniques. PATIENT SAMPLE: Forty-nine patients diagnosed with idiopathic scoliosis were chosen based on convenience, without predilection for gender, age, type, location, or magnitude of the curvature. OUTCOME MEASURES: Images were examined to evaluate Cobb angle variability, end plate selection, as well as intra- and interobserver errors. METHODS: Specific software was developed to digitally reproduce the Cobb method and calculate semiautomatically the degree of scoliotic deformity. During the study, three observers estimated the Cobb angle using both the digital and the traditional manual methods. RESULTS: The results showed that Cobb angle measurements may be reproduced in the computer as reliably as with the traditional manual method, in similar conditions to those found in clinical practice. CONCLUSIONS: The computer-assisted method (digital method) is clinically advantageous and appropriate to assess the scoliotic curvature in the frontal plane using Cobb method. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Axial vertebral rotation, an important parameter in the assessment of scoliosis may be identified on X-ray images. In line with the advances in the field of digital radiography, hospitals have been increasingly using this technique. The objective of the present study was to evaluate the reliability of computer-processed rotation measurements obtained from digital radiographs. A software program was therefore developed, which is able to digitally reproduce the methods of Perdriolle and Raimondi and to calculate semi-automatically the rotation degree of vertebra on digital radiographs. Three independent observers estimated vertebral rotation employing both the digital and the traditional manual methods. Compared to the traditional method, the digital assessment showed a 43% smaller error and a stronger correlation. In conclusion, the digital method seems to be reliable and enhance the accuracy and precision of vertebral rotation measurements.
Resumo:
Objective: Experimental study idealized to investigate the mechanical properties of deep flexor tendons of rabbits that underwent the tenotomy followed by tenorrhaphy and early application of therapeutic ultrasound with different intensities, in comparison to tendons submitted to tenorrhaphy only. Material and Method: Forty-four rabbits were divided into four experimental groups according to the ultrasound application. They were all submitted to a section of deep flexor tendon in zone 2 and immobilized with an orthosis maintained throughout the experiment. Group A received ultrasonic treatment with an intensity of 1.4 W/cm(2), group B with 0.6 W/cm(2), both in continuous mode, group C with 0.6 W/cm(2) SATA, in pulsated mode at 50% and group D did not receive any ultrasonic treatment. The ultrasonic frequency employed was 1 MHz. After euthanasia, the tendons were dissected and submitted to the mechanical test of traction and qualitative histological analysis. The evaluated mechanical properties were: maximum force, deformation in maximum force and stiffness. Results: There were no statistically significant differences among the experimental groups. Conclusion: Therapeutic ultrasound did not improve the mechanical properties of the flexor tendons after repair.
Resumo:
Objective.-To contrast the cervical range of motion (CROM) in women with episodic migraine (EM), transformed migraine (TM), and controls without migraine headaches. Background.-Migraineurs often complain about neck pain. Furthermore, neck problems can worsen the headaches in individuals with migraine. Individuals with neck pain usually have reduced CROM. Nonetheless, studies assessing the CROM in migraineurs are scarce. Methods.-Our sample was selected in an outpatient headache clinic, and consisted of 45 women aged 20-54 years old, 15 per group. Cervical mobility was evaluated in movements of flexion, extension, right lateral flexion, left lateral flexion, right rotation, and left rotation using the CROM technique, and was contrasted among the groups. Migraine clinical patterns were also evaluated ( frequency, duration of migraine, pain in the moment of evaluation, pain in movement, and pain localization) as a function of CROM. Results.-Compared with controls, individuals with TM had numerically inferior CROM in all parameters, and significant reduction in 3 of them: extension (59.3 vs 68.1, P = .02), left lateral flexion (44.5 vs 49.1, P = .03), and right rotation (62.2 vs 69.6, P = .02). Compared with individuals with migraine, the TM group presented significantly reduced mobility only for extension ( 59.3 vs 68.4, P = .02). Migraineurs also had numerically inferior ROM, contrasted to controls, in 5 of the 6 parameters, although significance was seen just for right rotation (60.8 vs 68.6 P < .01). There was no correlation between cervical mobility and migraine parameters. The CROM was not reduced for the symptomatic side of migraine, in cases of unilateral pain. Conclusion.-Contrasted to controls, individuals with episodic and TM have decreased cervical range of motion.
Resumo:
Introduction: The photoelasticity is used for assessing the tensions/deformations involved in photoelastic materials when submitted to a given load by the observation of optical effects. The screw performance and mechanical functions are directly associated to the quality of the screws fixation in the vertebrae. Photoelasticity is an important tool to perform comparative studies of this nature. Objective: The aim of this study was to compare, by using photoelasticity, internal stresses produced by the screw with an external diameter of 6 mm, when submitted to two different pullout strengths. Materials and Methods: For this, four photoelastic models were produced. The simulation was conducted by using two pullout strengths: 0.75 and 1.50 kgf. The maximum shear stresses were calculated on 19 points around the screws, using the Tardy compensation method. Results:The values of maximum shear stress were higher with the load of 1.50 kgf. Conclusion: Thus, the screw will be more susceptible to pullout when heavier loads are applied. According to our analysis, we also found that the site with the highest maximum shear stress was found to be at the peak of creast, particularly near the tips of the screws, regardless of the load employed.
Resumo:
Background. A variety of techniques can be used to achieve stabilization of femoral valgus osteotomies in children, but what is lacking is a versatile fixation system that associates stability and versatility at different ages and for different degrees of deformity. Methods. Mechanical tests of three configurations used to fix femoral valgus osteotomies, based oil the tension band wire principle, were carried out. A 30 degrees wedge valgus osteotomy was performed at the subtrochanteric level in 60 swine femurs and fixed with three different systems. In Group 1, two Kirschner wires (K wire) were introduced from the tip of the greater trochanter to the medial cortex, crossing the osteotomy. A flexible steel wire was anchored to the K wires into holes in the lateral cortex and tightened to form a tension band. The same setup was used in Group 2, but two additional smooth K wires were inserted into the lateral surface of the greater trochanter and driven to the femoral head with the distal extremities bent and tied around tile bone shaft. In Group 3, the fixation was similar to that in Group 2, but tile ascending K wires were introduced below the osteotomy level, crossing the osteotonly. Mechanical tests in bending-compression and torsion were used to access the stability. Findings. The torsional relative stiffness was 116% greater for Group 3 (0.27 N m/degree) and no significant difference was found between Group 1 (0.10 N m/degree) and Group 2 (0.12 N m/degree). The average torque was 103% higher for Group 3 (1.86 N m). Stiffness in bending-compression was significantly higher in Group 3 (508 x 10(3) N/m) than in Group 1 (211 x 10(3) N/m) and Group 2 (219 x 10(3) N/m). Interpretation. Fixation as used in Group 3 was significantly more stable, both in torsion and bending-compression tests, than tile other two techniques. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In adolescent idiopathic scoliosis (AIS) there has been a shift towards increasing the number of implants and pedicle screws, which has not been proven to improve cosmetic correction. To evaluate if increasing cost of instrumentation correlates with cosmetic correction using clinical photographs. 58 Lenke 1A and B cases from a multicenter AIS database with at least 3 months follow-up of clinical photographs were used for analysis. Cosmetic parameters on PA and forward bending photographs included angular measurements of trunk shift, shoulder balance, rib hump, and ratio measurements of waist line asymmetry. Pre-op and follow-up X-rays were measured for coronal and sagittal deformity parameters. Cost density was calculated by dividing the total cost of instrumentation by the number of vertebrae being fused. Linear regression and spearman`s correlation were used to correlate cost density to X-ray and photo outcomes. Three independent observers verified radiographic and cosmetic parameters for inter/interobserver variability analysis. Average pre-op Cobb angle and instrumented correction were 54A degrees (SD 12.5) and 59% (SD 25) respectively. The average number of vertebrae fused was 10 (SD 1.9). The total cost of spinal instrumentation ranged from $6,769 to $21,274 (Mean $12,662, SD $3,858). There was a weak positive and statistically significant correlation between Cobb angle correction and cost density (r = 0.33, p = 0.01), and no correlation between Cobb angle correction of the uninstrumented lumbar spine and cost density (r = 0.15, p = 0.26). There was no significant correlation between all sagittal X-ray measurements or any of the photo parameters and cost density. There was good to excellent inter/intraobserver variability of all photographic parameters based on the intraclass correlation coefficient (ICC 0.74-0.98). Our method used to measure cosmesis had good to excellent inter/intraobserver variability, and may be an effective tool to objectively assess cosmesis from photographs. Since increasing cost density only improves mildly the Cobb angle correction of the main thoracic curve and not the correction of the uninstrumented spine or any of the cosmetic parameters, one should consider the cost of increasing implant density in Lenke 1A and B curves. In the area of rationalization of health care expenses, this study demonstrates that increasing the number of implants does not improve any relevant cosmetic or radiographic outcomes.
Resumo:
Study Design. Prospective clinical electromyographic study in adolescents with idiopathic scoliosis and control group. Objective. To evaluate electromyographic amplitude from erector spinae muscles of patients with idiopathic scoliosis in comparison with control volunteers without spinal deformities. Summary of Background Data. Previous studies have indicated an increased electromyographic activity in paravertebral muscles in the convex side of the scoliotic curvature. However, in previous studies there is the absence or poor description of methods used, and some studies were conducted before the recording and processing recommendations for surface electromyographic signals had been described. Methods. Thirty individuals, matched by sex, age, and body mass index, were divided into two groups: scoliosis and control. The electric activity of the erector spinae muscles was determined by surface electromyography on both sides of the three levels of spine: T8, L2, and L5. Results. Normalized electromyographic amplitudes of erector spinae muscles, in the convex and concave sides of the apex region of the scoliotic curve in the thoracic and lumbar regions, were not significantly different. Also, there was no significant difference between the muscles of these regions when the scoliosis group was compared with the control group. The erector spinae muscle at the L5 level, representing the lower vertebral limit of the lumbar scoliotic curve, had significantly higher electromyographic activity on the convex side. However, the same alteration was shown in the control group homologous muscle (on the left side). Conclusion. Erector spinae muscles on the convex and concave sides at the curvature apex in patients with idiopathic scoliosis and small magnitude of curves did not show significant differences in electromyographic amplitude. Future studies should evaluate whether intragroup activation differences, at the L5 level in 80% of the maximum voluntary isometric contractions with predominance of the left side of the vertebral column, have any relation to the condition.