996 resultados para Spectral Characterization
Resumo:
Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.
Resumo:
Contrast echocardiography has been demonstrated useful for left ventricular opacification and improvement of endocardial border delineation. Another important clinical application of this technique refers to the better characterization of cardiac tumors and masses. We here described an asymptomatic patient with cystic mass attached to submitral valve apparatus in which contrast echocardiography was performed after intravenous injection of lipid-encapsulated microbubbles. It resulted in enhancement of the cystic borders and allowed for better definition of its diagnosis. Multislice computed tomography confirmed the echocardiographic findings. This case illustrates the potential of contrast echocardiography to improve the anatomic evaluation of cardiac masses.
Resumo:
MCM-41 samples of various pore dimensions are synthesized. Plotting of nitrogen adsorption data at 77 K versus the statistical film thickness (comparison plot) reveals three distinct stages, with a characteristic of two points of inflection. The steep intermediate stage caused by capillary condensation occurred in the highly uniform mesopores. From the slopes of the sections before and after the condensation, the surface area of the mesopores is calculated. The linear portion of the last section is extrapolated to the adsorption axis of the comparison plot, and this intercept is used to obtain the volume of the mesopores. From the surface area and pore volume, average mesopore diameter is calculated, and the value thus obtained is in good agreement with the pore dimension obtained from powder X-ray diffraction measurements. The principle of the calculation as well as problems associated are discussed in detail.
Resumo:
This report describes the identification of a murine cytomegalovirus (MCMV) G protein-coupled receptor (GCR) homolog. This open reading frame (M33) is most closely related to, and collinear with, human cytomegalovirus UL33, and homologs are also present in human herpesvirus 6 and 7 (U12 for both viruses). Conserved counterparts in the sequenced alpha- or gammaherpesviruses have not been identified to date, suggesting that these genes encode proteins which are important for the biological characteristics of betaherpesviruses. We have detected transcripts for both UL33 and M33 as early as 3 or 4 h postinfection, and these reappear at late times. In addition, we have identified N-terminal splicing for both the UL33 and M33 RNA transcripts. For both open reading frames, splicing results in the introduction of amino acids which are highly conserved among known GCRs. To characterise the function of the M33 in the natural host, two independent MCMV recombinant viruses were prepared, each of which possesses an M33 open reading frame which has been disrupted with the beta-galactosidase gene. While the recombinant M33 null viruses showed no phenotypic differences in replication from wild-type MCMV in primary mouse embryo fibroblasts in vitro, they showed severely restricted growth in the salivary glands of infected mice. These data suggest that M33 plays an important role in vivo, in particular in the dissemination to or replication in the salivary gland, and provide the first evidence for the function of a viral GCR homolog in vivo.
Resumo:
The phospholipases A(1) (PLA(1)s) from the venom of the social wasp Polybia paulista occur as a mixture of different molecular forms. To characterize the molecular origin of these structural differences, an experimental strategy was planned combining the isolation of the pool of PLAs from the wasp venom with proteomic approaches by using 2-D, MALDI-TOF-TOF MS and classical protocols of protein chemistry, which included N- and C-terminal sequencing. The existence of an intact form of PLA(1) and seven truncated forms was identified, apparently originating from controlled proteolysis of the intact protein; in addition to this, four of these truncated forms also presented carbohydrates attached to their molecules. Some of these forms are immunoreactive to specific-IgE, while others are not. These observations permit to raise the hypothesis that naturally occurring proteolysis of PLA(1), combined with protein glycosylation may create a series of different molecular forms of these proteins, with different levels of allergenicity. Two forms of PLA(2)s, apparently related to each other, were also identified; however, it was not possible to determine the molecular origin of the differences between both forms, except that one of them was glycosylated. None of these forms were immunoreactive to human specific IgE.
Resumo:
The fluorescence spectrum of a strongly driven two-level atom located inside an optical cavity damped by a narrow-bandwidth squeezed vacuum is studied. We use a dressed atom model approach, first applied to squeezed vacuum problems by Yeoman and Barnett, to derive the master equation of the system and discuss the role of the cavity and the squeezed vacuum in the narrowing of the spectral lines and the population trapping effect. We find that in the presence of a single-mode cavity the effect of squeezing on the fluorescence spectrum is more evident in the linewidths of the Rabi sidebands rather than in the linewidth of the central component. Even in the absence of squeezing, the cavity can reduce the linewidth of the central component almost to zero, whereas the Rabi sidebands can be narrowed only to some finite value. In the presence of a two-mode cavity and a two-mode squeezed vacuum the signature of squeezing is evident in the linewidths of all spectral lines. We also establish that the narrowing of the spectral lines is very sensitive to the detuning of the driving field from the atomic resonance. Moreover, we find that the population trapping effect, predicted for the broadband squeezed vacuum case, may appear in a narrow-bandwidth case only if the input squeezed modes are perfectly matched to the cavity modes and if there is non-zero squeezing at the Rabi sidebands.
Resumo:
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon 22, Q[22] X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small a-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow a migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.
Resumo:
We showed in 1988 that there are two strains of Chlamydia psittaci which infect the koala (Phascolarctos cinereus). In order to further investigate the role of these chlamydial strains in pathogenesis, we have attempted to identify genes of koala type I strain chlamydial which are involved in the immunogenic response, Transformation of Escherichia coli with a plasmid containing a 6.3-kb fragment (pKOC-10) of C. psittaci DNA caused the appearance of a specific chlamydial lipopolysaccharide (LPS) epitope on the host strain. The smallest DNA fragment capable of inducing the expression of chlamydial LPS was an Xbal fragment, 2.4 kb in size (pKOC-5). DNA sequence analysis of the complete fragment revealed regions of high identity, at the amino acid level, to the gseA genes of C. pneomoniae, C. psittaci 6BC and C. trachomatis, and the kdtA gene of E. coli which code for transferases catalysing the addition of 3-deoxy-D-manno-octulosonic acid (Kdo) residues to lipid A. Two open reading frames (ORFs) of 1,314 and 501 nucleotides in size, within the 2.4-kb fragment, were evident, and mRNA species corresponding to these ORFs were detected by Northern analysis. Both ORF1 and ORF2 are required for the appearance of chlamydia-specific LPS on the surface of recombinant E. coli.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
The present work is a report of the characterization of superparamagnetic iron oxide nanoparticles coated with silicone used as a contrast agent in magnetic resonance imaging of the gastrointestinal tract. The hydrodynamic size of the contrast agent is 281.2 rim, where it was determined by transmission electron microscopy and a Fe(3)O(4) crystalline structure was identified by X-ray diffraction, also confirmed by Mossbauer Spectroscopy. The blocking temperature of 190 K was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above the blocking temperature. Ferromagnetic resonance analysis indicated the superparamagnetic nature of the nanoparticles and a strong temperature dependence of the peak-to-peak linewidth Delta H(pp), giromagnetic factor g, number of spins N(S) and relaxation time T(2) were observed. This behavior can be attributed to an increase in the superexchange interaction.
Resumo:
Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
Biocompatible superparamagnetic iron oxide nanoparticles of magnetite coated with dextran were magnetically characterized using the techniques of SQUID (superconducting quantum interference device) magnetometry and ferromagnetic resonance (FMR). The SQUID magnetometry characterization was performed by isothermal measurements under applied magnetic field using the methods of zero-field-cooling (ZFC) and field-cooling (FC). The magnetic behavior of the nanoparticles indicated their superparamagnetic nature and it was assumed that they consisted exclusively of monodomains. The transition to a blocked state was observed at the temperature T(B) = (43 +/- 1) K for frozen ferrofluid and at (52 +/- 1) K for the lyophilized ferrofluid samples. The FMR analysis showed that the derivative peak-to-peak linewidth (Delta H(PP)), gyromagnetic factor (g), number of spins (N(S)), and spin-spin relaxation time (T(2)) were strongly dependent on both temperature and super-exchange interaction. This information is important for possible nanotechnological applications, mainly those which are strongly dependent on the magnetic parameters.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.