930 resultados para Spatial Query Processing And Optimization
Resumo:
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.
Resumo:
A conductometric micromethod combined with image analysis system has been developed allowing to determine the CO2 production within 'two-dimensional' tissues, i.e., flat and thin cell layers or epithelial sheets. The preparation was mounted into an airtight chamber separated in two compartments by a thin silicone membrane permeable to gases. The lower compartment contained the nutritive medium and the preparation. The upper compartment and a conductivity measuring capillary connected in series were perfused with a solution of Ba(OH)2. The CO2 produced by the tissue precipitated as BaCO3 and the resulting decrease of electrical conductivity was linearly related to the total CO2 production. In addition, the pattern of CO2 production was directly observable as the BaCO3 crystals formed upon the silicone membrane over the regions which produced CO2. The spatial distribution of the crystals was quantified by video image processing and the regional CO2 production evaluated with a spatial resolution of 100 microns. This new microtechnique was originally developed to study the CO2 production in the early chick blastoderm which is a disc 1-5 cells thick. At the stage of young neurula the CO2 production was found to be 235 +/- 37 nmol.h-1 (mean +/- SD; n = 10) per blastoderm and large variations of local CO2 production were detected from one region to another (from 0.6 to 6.5 nmol.h-1.mm-2). These results indicate a high metabolic and functional differentiation of cells within the blastoderm. The possible applications and improvements of such a microtechnique are discussed.
Resumo:
Coastal birds are an integral part of coastal ecosystems, which nowadays are subject to severe environmental pressures. Effective measures for the management and conservation of seabirds and their habitats call for insight into their population processes and the factors affecting their distribution and abundance. Central to national and international management and conservation measures is the availability of accurate data and information on bird populations, as well as on environmental trends and on measures taken to solve environmental problems. In this thesis I address different aspects of the occurrence, abundance, population trends and breeding success of waterbirds breeding on the Finnish coast of the Baltic Sea, and discuss the implications of the results for seabird monitoring, management and conservation. In addition, I assess the position and prospects of coastal bird monitoring data, in the processing and dissemination of biodiversity data and information in accordance with the Convention on Biological Diversity (CBD) and other national and international commitments. I show that important factors for seabird habitat selection are island area and elevation, water depth, shore openness, and the composition of island cover habitats. Habitat preferences are species-specific, with certain similarities within species groups. The occurrence of the colonial Arctic Tern (Sterna paradisaea) is partly affected by different habitat characteristics than its abundance. Using long-term bird monitoring data, I show that eutrophication and winter severity have reduced the populations of several Finnish seabird species. A major demographic factor through which environmental changes influence bird populations is breeding success. Breeding success can function as a more rapid indicator of sublethal environmental impacts than population trends, particularly for long-lived and slowbreeding species, and should therefore be included in coastal bird monitoring schemes. Among my target species, local breeding success can be shown to affect the populations of the Mallard (Anas platyrhynchos), the Eider (Somateria mollissima) and the Goosander (Mergus merganser) after a time lag corresponding to their species-specific recruitment age. For some of the target species, the number of individuals in late summer can be used as an easier and more cost-effective indicator of breeding success than brood counts. My results highlight that the interpretation and application of habitat and population studies require solid background knowledge of the ecology of the target species. In addition, the special characteristics of coastal birds, their habitats, and coastal bird monitoring data have to be considered in the assessment of their distribution and population trends. According to the results, the relationships between the occurrence, abundance and population trends of coastal birds and environmental factors can be quantitatively assessed using multivariate modelling and model selection. Spatial data sets widely available in Finland can be utilised in the calculation of several variables that are relevant to the habitat selection of Finnish coastal species. Concerning some habitat characteristics field work is still required, due to a lack of remotely sensed data or the low resolution of readily available data in relation to the fine scale of the habitat patches in the archipelago. While long-term data sets exist for water quality and weather, the lack of data concerning for instance the food resources of birds hampers more detailed studies of environmental effects on bird populations. Intensive studies of coastal bird species in different archipelago areas should be encouraged. The provision and free delivery of high-quality coastal data concerning bird populations and their habitats would greatly increase the capability of ecological modelling, as well as the management and conservation of coastal environments and communities. International initiatives that promote open spatial data infrastructures and sharing are therefore highly regarded. To function effectively, international information networks, such as the biodiversity Clearing House Mechanism (CHM) under the CBD, need to be rooted at regional and local levels. Attention should also be paid to the processing of data for higher levels of the information hierarchy, so that data are synthesized and developed into high-quality knowledge applicable to management and conservation.
Resumo:
ABSTRACTTo evaluate the effect of planting date and spatial pattern on common bean yield under weed-free and weed-infested conditions, an experiment was conducted in Kelachay, Northern Iran, in 2013. The experimental design was a randomized complete block in a factorial arrangement with three replicates. Factors were planting date (10 August and 20 August), spatial pattern (square and rectangular planting pattern, with a planting distance of 30 x 30 cm and 45 x 20 cm, respectively), and weed management regime (weed-free and weedy conditions, weeded and not weeded throughout the growing season, respectively). Results showed that the main effect of planting date was significant only for pod number per plant and seed number per pod. At the same time, pod number per plant, seed number per pod, pod length, and grain yield were influenced significantly by spatial pattern. Results of ANOVA have also indicated that all traits, except pod length, were influenced significantly by weed-management regimes. Moreover, effect of planting date and spatial pattern were nonsignificant for weed dry weight. Mean comparison has expressed a significant increment in seed yield for square planting arrangement (1,055 kg ha-1) over rectangular (971 kg ha-1). Weeding has also presented an overall 12% and 8% improvement in grain and pod yield over control (weedy check), respectively. Based on the results of this study, weed control, as well as square planting pattern, are recommended for obtaining the highest seed yield in common bean.
Resumo:
We measured human contrast sensitivity to radial frequencies modulated by cylindrical (Jo) and spherical (j o) Bessel profiles. We also measured responses to profiles of j o, j1, j2, j4, j8, and j16. Functions were measured three times by at least three of eight observers using a forced-choice method. The results conform to our expectations that sensitivity would be higher for cylindrical profiles. We also observed that contrast sensitivity is increased with the j n order for n greater than zero, having distinct orderly effects at the low and high frequency ends. For n = 0, 1, 2, and 4 sensitivity tended to occur around 0.8-1.0 cpd while for n = 8 and 16 it seemed to shift gradually to 0.8-3.0 cpd. We interpret these results as being consistent with the possibility that spatial frequency processing by the human visual system can be defined a priori in terms of polar coordinates and discuss its application to study face perception.
Resumo:
The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.
Resumo:
Yellowfin tuna has a high level of free histidine in their muscle, which can lead to histamine formation by microorganisms if temperature abuse occurs during handling and further processing. The objective of this study was to measure levels of histamine in damaged and undamaged thawed muscle to determine the effect of physical damage on the microbial count and histamine formation during the initial steps of canning processing and to isolate and identify the main histamine-forming microorganisms present in the flesh of yellowfin tuna. Total mesophilic and psicrophilic microorganisms were determined using the standard plate method. The presence of histamine-forming microorganisms was determined in a modified Niven's agar. Strains were further identified using the API 20E kit for enterobacteriaceae and Gram-negative bacilli. Physically damaged tuna did not show higher microbiological contamination than that of undamaged muscle tuna. The most active histamine-forming microorganism present in tuna flesh was Morganella morganii. Other decarboxylating microorganisms present were Enterobacter agglomerans and Enterobacter cloacae. Physical damage of tune during catching and handling did not increase the level of histamine or the amount of microorganisms present in tuna meat during frozen transportation, but they showed a higher risk of histamine-forming microorganism growth during processing.
Resumo:
The intake of carotenoids is associated with antioxidant properties and some of these substances have activity of pro-vitamin A. This study aimed to estimate the intake of carotenoids (average values) by the Brazilian population focusing on beneficiaries of the 'Bolsa Família' Program and identify the dietary sources, according to the purpose and degree of processing and the inclusion of food additives. The database used is the personal food consumption module of the Household Budget Survey of 2008-2009, conducted by the Brazilian Institute of Geography and Statistics. The content of carotenoids in foods was obtained primarily from a National data source. Food products were classified into three categories: 1) fresh and minimally processed foods; 2) processed foods (containing food additives, except for flavoring and coloring agents); and 3) highly processed foods (containing flavoring and coloring agents). Insufficient intakes were identified for the conditional cash transfer program beneficiaries (3,547.1 µg). Fresh and minimally processed foods supplied between 48.6% (for girls) and 65.7% (for male adults) of pro-vitamin carotenoids. Processed foods were sources of between 55.5% and 57.0% of lutein + zeaxanthin for elderly and between 58.0% and 67.8% of lycopene for adults. Highly processed foods contributed to less than 5.0% of total carotenoids.
Resumo:
AbstractThermal processing and production practices used in vegetables can cause changes in their phytochemical contents. Eggplant is characterized by its high antioxidant content. The objective of this work was to determine levels of anthocyanins, polyphenols, and flavonoids and antioxidant capacity in organically and conventionally grown eggplant prepared fresh or subjected to one of three thermal preparation methods: boiling, baking or steaming. The soluble and hydrolyzable polyphenols and flavonoids content were quantified by Folin-Ciocalteu and Aluminum chloride methods, respectively. Anthocyanins were quantified according to the pH differential method. Antioxidant capacity was determined by DPPH and ORAC methods. The results showed differences between organic and conventional eggplant for some variables although cultivation method did not have a consistent effect. Hydrolysable polyphenol content was greater, and soluble and hydrolysable antioxidant capacities were higher in organically grown eggplant, while anthocyanin content was greater in conventionally grown eggplant. Fresh eggplant produced under conventional cultivation had a much greater content of anthocyanins compared to that of other cultivation method-thermal treatment combination. In general, steamed eggplant contained higher total polyphenol and flavonoid levels as well as greater antioxidant capacity. Steamed eggplant from both conventional and organic systems also had high amounts of anthocyanins compared to other thermal treatments.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.
Resumo:
In this thesis, three main questions were addressed using event-related potentials (ERPs): (1) the timing of lexical semantic access, (2) the influence of "top-down" processes on visual word processing, and (3) the influence of "bottom-up" factors on visual word processing. The timing of lexical semantic access was investigated in two studies using different designs. In Study 1,14 participants completed two tasks: a standard lexical decision (LD) task which required a word/nonword decision to each target stimulus, and a semantically primed version (LS) of it using the same category of words (e.g., animal) within each block following which participants made a category judgment. In Study 2, another 12 participants performed a standard semantic priming task, where target stimulus words (e.g., nurse) could be either semantically related or unrelated to their primes (e.g., doctor, tree) but the order of presentation was randomized. We found evidence in both ERP studies that lexical semantic access might occur early within the first 200 ms (at about 170 ms for Study 1 and at about 160 ms for Study 2). Our results were consistent with more recent ERP and eye-tracking studies and are in contrast with the traditional research focus on the N400 component. "Top-down" processes, such as a person's expectation and strategic decisions, were possible in Study 1 because of the blocked design, but they were not for Study 2 with a randomized design. Comparing results from two studies, we found that visual word processing could be affected by a person's expectation and the effect occurred early at a sensory/perceptual stage: a semantic task effect in the PI component at about 100 ms in the ERP was found in Study 1 , but not in Study 2. Furthermore, we found that such "top-down" influence on visual word processing might be mediated through separate mechanisms depending on whether the stimulus was a word or a nonword. "Bottom-up" factors involve inherent characteristics of particular words, such as bigram frequency (the total frequency of two-letter combinations of a word), word frequency (the frequency of the written form of a word), and neighborhood density (the number of words that can be generated by changing one letter of an original word or nonword). A bigram frequency effect was found when comparing the results from Studies 1 and 2, but it was examined more closely in Study 3. Fourteen participants performed a similar standard lexical decision task but the words and nonwords were selected systematically to provide a greater range in the aforementioned factors. As a result, a total of 18 word conditions were created with 18 nonword conditions matched on neighborhood density and neighborhood frequency. Using multiple regression analyses, we foimd that the PI amplitude was significantly related to bigram frequency for both words and nonwords, consistent with results from Studies 1 and 2. In addition, word frequency and neighborhood frequency were also able to influence the PI amplitude separately for words and for nonwords and there appeared to be a spatial dissociation between the two effects: for words, the word frequency effect in PI was found at the left electrode site; for nonwords, the neighborhood frequency effect in PI was fovind at the right elecfrode site. The implications of otir findings are discussed.
Resumo:
Individuals who have sustained a traumatic brain injury (TBI) often complain of t roubl e sleeping and daytime fatigue but little is known about the neurophysiological underpinnings of the s e sleep difficulties. The fragile sleep of thos e with a TBI was predicted to be characterized by impairments in gating, hyperarousal and a breakdown in sleep homeostatic mechanisms. To test these hypotheses, 20 individuals with a TBI (18- 64 years old, 10 men) and 20 age-matched controls (18-61 years old, 9 men) took part in a comprehensive investigation of their sleep. While TBI participants were not recruited based on sleep complaint, the fmal sample was comprised of individuals with a variety of sleep complaints, across a range of injury severities. Rigorous screening procedures were used to reduce potential confounds (e.g., medication). Sleep and waking data were recorded with a 20-channel montage on three consecutive nights. Results showed dysregulation in sleep/wake mechanisms. The sleep of individuals with a TBI was less efficient than that of controls, as measured by sleep architecture variables. There was a clear breakdown in both spontaneous and evoked K-complexes in those with a TBI. Greater injury severities were associated with reductions in spindle density, though sleep spindles in slow wave sleep were longer for individuals with TBI than controls. Quantitative EEG revealed an impairment in sleep homeostatic mechanisms during sleep in the TBI group. As well, results showed the presence of hyper arousal based on quantitative EEG during sleep. In wakefulness, quantitative EEG showed a clear dissociation in arousal level between TBls with complaints of insomnia and TBls with daytime fatigue. In addition, ERPs indicated that the experience of hyper arousal in persons with a TBI was supported by neural evidence, particularly in wakefulness and Stage 2 sleep, and especially for those with insomnia symptoms. ERPs during sleep suggested that individuals with a TBI experienced impairments in information processing and sensory gating. Whereas neuropsychological testing and subjective data confirmed predicted deficits in the waking function of those with a TBI, particularly for those with more severe injuries, there were few group differences on laboratory computer-based tasks. Finally, the use of correlation analyses confirmed distinct sleep-wake relationships for each group. In sum, the mechanisms contributing to sleep disruption in TBI are particular to this condition, and unique neurobiological mechanisms predict the experience of insomnia versus daytime fatigue following a TBI. An understanding of how sleep becomes disrupted after a TBI is important to directing future research and neurorehabilitation.
Resumo:
Les amidons non modifiées et modifiés représentent un groupe d’excipients biodégradables et abondants particulièrement intéressant. Ils ont été largement utilisés en tant qu’excipients à des fins diverses dans des formulations de comprimés, tels que liants et/ou agents de délitement. Le carboxyméthylamidon sodique à haute teneur en amylose atomisé (SD HASCA) a été récemment proposé comme un excipient hydrophile à libération prolongée innovant dans les formes posologiques orales solides. Le carboxyméthylamidon sodique à haute teneur en amylose amorphe (HASCA) a d'abord été produit par l'éthérification de l'amidon de maïs à haute teneur en amylose avec le chloroacétate. HASCA a été par la suite séché par atomisation pour obtenir le SD HASCA. Ce nouvel excipient a montré des propriétés présentant certains avantages dans la production de formes galéniques à libération prolongée. Les comprimés matriciels produits à partir de SD HASCA sont peu coûteux, simples à formuler et faciles à produire par compression directe. Le principal objectif de cette recherche était de poursuivre le développement et l'optimisation des comprimés matriciels utilisant SD HASCA comme excipient pour des formulations orales à libération prolongée. A cet effet, des tests de dissolution simulant les conditions physiologiques du tractus gastro-intestinal les plus pertinentes, en tenant compte de la nature du polymère à l’étude, ont été utilisés pour évaluer les caractéristiques à libération prolongée et démontrer la performance des formulations SD HASCA. Une étude clinique exploratoire a également été réalisée pour évaluer les propriétés de libération prolongée de cette nouvelle forme galénique dans le tractus gastro-intestinal. Le premier article présenté dans cette thèse a évalué les propriétés de libération prolongée et l'intégrité physique de formulations contenant un mélange comprimé de principe actif, de chlorure de sodium et de SD HASCA, dans des milieux de dissolution biologiquement pertinentes. L'influence de différentes valeurs de pH acide et de temps de séjour dans le milieu acide a été étudiée. Le profil de libération prolongée du principe actif à partir d'une formulation de SD HASCA optimisée n'a pas été significativement affecté ni par la valeur de pH acide ni par le temps de séjour dans le milieu acide. Ces résultats suggèrent une influence limitée de la variabilité intra et interindividuelle du pH gastrique sur la cinétique de libération à partir de matrices de SD HASCA. De plus, la formulation optimisée a gardé son intégrité pendant toute la durée des tests de dissolution. L’étude in vivo exploratoire a démontré une absorption prolongée du principe actif après administration orale des comprimés matriciels de SD HASCA et a montré que les comprimés ne se sont pas désintégrés en passant par l'estomac et qu’ils ont résisté à l’hydrolyse par les α-amylases dans l'intestin. Le deuxième article présente le développement de comprimés SD HASCA pour une administration orale une fois par jour et deux fois par jour contenant du chlorhydrate de tramadol (100 mg et 200 mg). Ces formulations à libération prolongée ont présenté des valeurs de dureté élevées sans nécessiter l'ajout de liants, ce qui facilite la production et la manipulation des comprimés au niveau industriel. La force de compression appliquée pour produire les comprimés n'a pas d'incidence significative sur les profils de libération du principe actif. Le temps de libération totale à partir de comprimés SD HASCA a augmenté de manière significative avec le poids du comprimé et peut, de ce fait, être utilisé pour moduler le temps de libération à partir de ces formulations. Lorsque les comprimés ont été exposés à un gradient de pH et à un milieu à 40% d'éthanol, un gel très rigide s’est formé progressivement sur leur surface amenant à la libération prolongée du principe actif. Ces propriétés ont indiqué que SD HASCA est un excipient robuste pour la production de formes galéniques orales à libération prolongée, pouvant réduire la probabilité d’une libération massive de principe actif et, en conséquence, des effets secondaires, même dans le cas de co-administration avec une forte dose d'alcool. Le troisième article a étudié l'effet de α-amylase sur la libération de principe actif à partir de comprimés SD HASCA contenant de l’acétaminophène et du chlorhydrate de tramadol qui ont été développés dans les premières étapes de cette recherche (Acetaminophen SR et Tramadol SR). La modélisation mathématique a montré qu'une augmentation de la concentration d’α-amylase a entraîné une augmentation de l'érosion de polymère par rapport à la diffusion de principe actif comme étant le principal mécanisme contrôlant la libération de principe actif, pour les deux formulations et les deux temps de résidence en milieu acide. Cependant, même si le mécanisme de libération peut être affecté, des concentrations d’α-amylase allant de 0 UI/L à 20000 UI/L n'ont pas eu d'incidence significative sur les profils de libération prolongée à partir de comprimés SD HASCA, indépendamment de la durée de séjour en milieu acide, le principe actif utilisé, la teneur en polymère et la différente composition de chaque formulation. Le travail présenté dans cette thèse démontre clairement l'utilité de SD HASCA en tant qu'un excipient à libération prolongée efficace.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.
Resumo:
Use of short fibers as reinforcing fillers in rubber composites is on an increasing trend. They are popular due to the possibility of obtaining anisotropic properties, ease of processing and economy. In the preparation of these composites short fibers are incorporated on two roll mixing mills or in internal mixers. This is a high energy intensive time consuming process. This calls for developing less energy intensive and less time consuming processes for incorporation and distribution of short fibers in the rubber matrix. One method for this is to incorporate fibers in the latex stage. The present study is primarily to optimize the preparation of short fiber- natural rubber composite by latex stage compounding and to evaluate the resulting composites in terms of mechanical, dynamic mechanical and thermal properties. A synthetic fiber (Nylon) and a natural fiber (Coir) are used to evaluate the advantages of the processing through latex stage. To extract the full reinforcing potential of the coir fibers the macro fibers are converted to micro fibers through chemical and mechanical means. The thesis is presented in 7 chapters