911 resultados para Spatial Frequency
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).
Resumo:
The Lingodroids are a pair of mobile robots that evolve a language for places and relationships between places (based on distance and direction). Each robot in these studies has its own understanding of the layout of the world, based on its unique experiences and exploration of the environment. Despite having different internal representations of the world, the robots are able to develop a common lexicon for places, and then use simple sentences to explain and understand relationships between places even places that they could not physically experience, such as areas behind closed doors. By learning the language, the robots are able to develop representations for places that are inaccessible to them, and later, when the doors are opened, use those representations to perform goal-directed behavior.
Resumo:
Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.
Resumo:
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.
Resumo:
In spite of significant research in the development of efficient algorithms for three carrier ambiguity resolution, full performance potential of the additional frequency signals cannot be demonstrated effectively without actual triple frequency data. In addition, all the proposed algorithms showed their difficulties in reliable resolution of the medium-lane and narrow-lane ambiguities in different long-range scenarios. In this contribution, we will investigate the effects of various distance-dependent biases, identifying the tropospheric delay to be the key limitation for long-range three carrier ambiguity resolution. In order to achieve reliable ambiguity resolution in regional networks with the inter-station distances of hundreds of kilometers, a new geometry-free and ionosphere-free model is proposed to fix the integer ambiguities of the medium-lane or narrow-lane observables over just several minutes without distance constraint. Finally, the semi-simulation method is introduced to generate the third frequency signals from dual-frequency GPS data and experimentally demonstrate the research findings of this paper.
Resumo:
The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3 at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.
Resumo:
Background: Access to cardiac services is essential for appropriate implementation of evidence-based therapies to improve outcomes. The Cardiac Accessibility and Remoteness Index for Australia (Cardiac ARIA) aimed to derive an objective, geographic measure reflecting access to cardiac services. Methods: An expert panel defined an evidence-based clinical pathway. Using Geographic Information Systems (GIS), a numeric/alpha index was developed at two points along the continuum of care. The acute category (numeric) measured the time from the emergency call to arrival at an appropriate medical facility via road ambulance. The aftercare category (alpha) measured access to four basic services (family doctor, pharmacy, cardiac rehabilitation, and pathology services) when a patient returned to their community. Results: The numeric index ranged from 1 (access to principle referral center with cardiac catheterization service ≤ 1 hour) to 8 (no ambulance service, > 3 hours to medical facility, air transport required). The alphabetic index ranged from A (all 4 services available within 1 hour drive-time) to E (no services available within 1 hour). 13.9 million (71%) Australians resided within Cardiac ARIA 1A locations (hospital with cardiac catheterization laboratory and all aftercare within 1 hour). Those outside Cardiac 1A were over-represented by people aged over 65 years (32%) and Indigenous people (60%). Conclusion: The Cardiac ARIA index demonstrated substantial inequity in access to cardiac services in Australia. This methodology can be used to inform cardiology health service planning and the methodology could be applied to other common disease states within other regions of the world.
Resumo:
Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. The Cardiac ARIA project, with its extensive use of geographic Information Systems (GIS), ranks each of Australia’s 20,387 urban, rural and remote population centres by accessibility to essential services or resources for the management of a cardiac event. This unique, innovative and highly collaborative project delivers a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia. Cardiac ARIA is innovative. It is a model that could be applied internationally and to other acute and chronic conditions such as mental health, midwifery, cancer, respiratory, diabetes and burns services. Cardiac ARIA was designed to: 1. Determine by expert panel, what were the minimal services and resources required for the management of a cardiac event in any urban, rural or remote population locations in Australia using a single patient pathway to access care. 2. Derive a classification using GIS accessibility modelling for each of Australia’s 20,387 urban, rural and remote population locations. 3. Compare the Cardiac ARIA categories and population locations with census derived population characteristics. Key findings are as follows: • In the event of a cardiac emergency, the majority of Australians had very good access to cardiac services. Approximately 71% or 13.9 million people lived within one hour of a category one hospital. • 68% of older Australians lived within one hour of a category one hospital (Principal Referral Hospital with access to Cardiac Catheterisation). • Only 40% of indigenous people lived within one hour of the category one hospital. • 16% (74000) of indigenous people lived more than one hour from a hospital. • 3% (91,000) of people 65 years of age or older lived more than one hour from any hospital or clinic. • Approximately 96%, or 19 million, of people lived within one hour of the four key services to support cardiac rehabilitation and secondary prevention. • 75% of indigenous people lived within one hour of the four cardiac rehabilitation services to support cardiac rehabilitation and secondary prevention. Fourteen percent (64,000 persons) indigenous people had poor access to the four key services to support cardiac rehabilitation and secondary prevention. • 12% (56,000) of indigenous people were more than one hour from a hospital and only had access one the four key services (usually a medical service) to support cardiac rehabilitation and secondary prevention.
Resumo:
High Speed Rail (HSR) is rapidly gaining popularity worldwide as a safe and efficient transport option for long-distance travel. Designed to win market shares from air transport, HSR systems optimise their productivity between increasing speeds and station spacing to offer high quality service and gain ridership. Recent studies have investigated the effects that the deployment of HSR infrastructure has on spatial distribution and the economic development of cities and regions. Findings appear mostly positive at higher geographical scales, where HSR links connect major urban centres several hundred kilometres apart and already well positioned within a national or international context. Also, at the urban level, studies have shown regeneration and concentration effects around HSR station areas with positive returns on city’s image and economy. However, doubts persist on the effects of HSR at an intermediate scale, where the accessibility trade off on station spacing limits access to many small and medium agglomerations. Thereby, their ability to participate in the development opportunities facilitated by HSR infrastructure is significantly reduced. The locational advantages deriving from transport improvements appear contrasting especially in regions that tend to have a polycentric structure, where cities may present greater accessibility disparities between those served by HSR and those left behind. This thesis fits in this context where intermediate and regional cities do not directly enjoy the presence of an HSR station while having an existing or planned proximate HSR corridor. With the aim of understanding whether there might be a solution to this apparent incongruity, the research investigates strategies to integrate HSR accessibility at the regional level. While current literature recommends to commit with ancillary investments to the uplift of station areas and the renewal of feeder systems, I hypothesised the interoperability between the HSR and the conventional networks to explore the possibilities offered by mixed traffic and infrastructure sharing. Thus, I developed a methodology to quantify the exchange of benefits deriving from this synergistic interaction. In this way, it was possible to understand which level of service quality offered by alternative transit strategies best facilitates the distribution of accessibility benefits for areas far from actual HSR stations. Therefore, strategies were selected for their type of service capable of regional extensions and urban penetrations, while incorporating a combination of specific advantages (e.g. speed, sub-urbanity, capacity, frequency and automation) in order to emulate HSR quality with increasingly efficient services. The North-eastern Italian macro region was selected as case study to ground the research offering concurrently a peripheral polycentric metropolitan form, the presence of a planned HSR corridor with some portions of HSR infrastructure implementation, and the project to develop a suburban rail service extended regionally. Results show significant distributive potential, in terms of network effects produced in relation with HSR, in increasing proportions for all the strategies considered: a regional metro rail strategy (abbreviated RMR), a regional high speed rail strategy (abbreviated RHSR), a regional light rail transit (abbreviated LRT) strategy, and a non-stopping continuous railway system (abbreviated CRS) strategy. The provision of additional tools to value HSR infrastructure against its accessibility benefits and their regional distribution through alternative strategies beyond the actual HSR stations, would have great implications, both politically and technically, in moving towards new dimensions of HSR evaluation and development.
Resumo:
Background/aims: Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Recent evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. Method: This project, with its extensive use of Geographic Information Systems (GIS) technology, will rank 11,338 rural and remote population centres to identify geographical ‘hotspots’ where there is likely to be a mismatch between the demand for and actual provision of cardiovascular services. It will, therefore, guide more equitable provision of services to rural and remote communities. Outcomes: The CARDIAC-ARIA project is designed to; map the type and location of cardiovascular services currently available in Australia, relative to the distribution of individuals who currently have symptomatic CVD; determine, by expert panel, what are the minimal requirements for comprehensive cardiovascular health support in metropolitan and rural communities and derive a rating classification based on the Accessibility and Remoteness Index of Australia (ARIA) for each of Australia's 11,338 rural and remote population centres. Conclusion: This unique, innovative and highly collaborative project has the potential to deliver a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia.
Resumo:
This paper presents a feasible spatial collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south-eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O-N ha−1 over the 2-year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2-year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4-C ha−1 day−1 during extended dry periods to less than 2–5 g CH4-C ha−1 day−1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4-C ha−1 yr−1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one-third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability
Resumo:
Objective To identify the spatial and temporal clusters of Barmah Forest virus (BFV) disease in Queensland in Australia, using geographical information systems (GIS) and spatial scan statistic (SaTScan). Methods We obtained BFV disease cases, population and statistical local areas boundary data from Queensland Health and Australian Bureau of Statistics respectively during 1992-2008 for Queensland. A retrospective Poisson-based analysis using SaTScan software and method was conducted in order to identify both purely spatial and space-time BFV disease high-rate clusters. A spatial cluster size of a proportion of the population and a 200km circle radius and varying time windows from 1 month to 12 months were chosen (for the space-time analysis). Results The spatial scan statistic detected a most likely significant purely spatial cluster (including 23 SLAs) and a most likely significant space-time cluster (including 24 SLAs) in approximately the same location. Significant secondary clusters were also identified from both the analyses in several locations. Conclusions This study provides evidence of the existence of statistically significant BFV disease clusters in Queensland, Australia. The study also demonstrated the relevance and applicability of SaTScan in analysing on-going surveillance data to identify clusters to facilitate the development of effective BFV disease prevention and control strategies in Queensland, Australia.