986 resultados para Sp1 transcription factor
Resumo:
Tuberculosis continues to be responsible for the deaths of millions of people, yet the virulence factors of the causative pathogens remain unknown. Genetic complementation experiments with strains of the Mycobacterium tuberculosis complex have identified a gene from a virulent strain that restores virulence to an attenuated strain. The gene, designated rpoV, has a high degree of homology with principal transcription or sigma factors from other bacteria, particularly Mycobacterium smegmatis and Streptomyces griseus. The homologous rpoV gene of the attenuated strain has a point mutation causing an arginine-->histidine change in a domain known to interact with promoters. To our knowledge, association of loss of bacterial virulence with a mutation in the principal sigma factor has not been previously reported. The results indicate either that tuberculosis organisms have an alternative principal sigma factor that promotes virulence genes or, more probably, that this particular mutant principal sigma factor is unable to promote expression of one or more genes required for virulence. Study of genes and proteins differentially regulated by the mutant transcription factor should facilitate identification of further virulence factors.
Resumo:
The activation of heat shock genes by diverse forms of environmental and physiological stress has been implicated in a number of human diseases, including ischemic damage, reperfusion injury, infection, neurodegeneration, and inflammation. The enhanced levels of heat shock proteins and molecular chaperones have broad cytoprotective effects against acute lethal exposures to stress. Here, we show that the potent antiinflammatory drug indomethacin activates the DNA-binding activity of human heat shock transcription factor 1 (HSF1). Perhaps relevant to its pharmacological use, indomethacin pretreatment lowers the temperature threshold of HSF1 activation, such that a complete heat shock response can be attained at temperatures that are by themselves insufficient. The synergistic effect of indomethacin and elevated temperature is biologically relevant and results in the protection of cells against exposure to cytotoxic conditions.
Resumo:
The c-myb protooncogene encodes a highly conserved transcription factor that functions as both an activator and a repressor of transcription. The v-myb oncogenes of E26 leukemia virus and avian myeloblastosis virus encode proteins that are truncated at both the amino and the carboxyl terminus, deleting portions of the c-Myb DNA-binding and negative regulatory domains. This has led to speculation that the deleted regions contain important regulatory sequences. We previously reported that the 42-kDa mitogen-activated protein kinase (p42mapk) phosphorylates chicken and murine c-Myb at multiple sites in the negative regulatory domain in vitro, suggesting that phosphorylation might provide a mechanism to regulate c-Myb function. We now report that three tryptic phosphopeptides derived from in vitro phosphorylated c-Myb comigrate with three tryptic phosphopeptides derived from metabolically labeled c-Myb immunoprecipitated from murine erythroleukemia cells. At least two of these peptides are phosphorylated on serine-528. Replacement of serine-528 with alanine results in a 2- to 7-fold increase in the ability of c-Myb to transactivate a Myb-responsive promoter/reporter gene construct. These findings suggest that phosphorylation serves to regulate c-Myb activity and that loss of this phosphorylation site from the v-Myb proteins may contribute to their transforming potential.
Resumo:
The Pax5 transcription factor BSAP (B-cell-specific activator protein) is known to bind to and repress the activity of the immunoglobulin heavy chain 3' alpha enhancer. We have detected an element--designated alpha P--that lies approximately 50 bp downstream of the BSAP binding site 1 and is required for maximal enhancer activity. In vitro binding experiments suggest that the 40-kDa protein that binds to this element (NF-alpha P) is a member of the Ets family present in both B-cell and plasma-cell nuclei. However, in vivo footprint analysis suggests that the alpha P site is occupied only in plasma cells, whereas the BSAP site is occupied in B cells but not in plasma cells. When Pax5 binding to the enhancer in B cells was blocked in vivo by transfection with a triple-helix-forming oligonucleotide an alpha P footprint appeared and endogenous immunoglobulin heavy chain transcripts increased. The triple-helix-forming oligonucleotide also increased enhancer activity of a transfected construct in B cells, but only when the alpha P site was intact. Pax5 thus regulates the 3' alpha enhancer and immunoglobulin gene transcription by blocking activation by NF-alpha P.
Resumo:
Genes containing the interferon-stimulated response element (ISRE) enhancer have been characterized as transcriptionally responsive primarily to type I interferons (IFN alpha/beta). Induction is due to activation of a multimeric transcription factor, interferon-stimulated gene factor 3 (ISGF3), which is activated by IFN alpha/beta but not by IFN gamma. We found that ISRE-containing genes were induced by IFN gamma as well as by IFN alpha in Vero cells. The IFN gamma response was dependent on the ISRE and was accentuated by preexposure of cells to IFN alpha, a treatment that increases the abundance of ISGF3 components. Overexpression of ISGF3 polypeptides showed that the IFN gamma response depended on the DNA-binding protein ISGF3 gamma (p48) as well as on the 91-kDa protein STAT91 (Stat1 alpha). The transcriptional response to IFN alpha required the 113-kDa protein STAT113 (Stat2) in addition to STAT91 and p48. Mutant fibrosarcoma cells deficient in each component of ISGF3 were used to confirm that IFN gamma induction of an ISRE reporter required p48 and STAT91, but not STAT113. A complex containing p48 and phosphorylated STAT91 but lacking STAT113 bound the ISRE in vitro. IFN gamma-induced activation of this complex, preferentially formed at high concentrations of p48 and STAT91, may explain some of the overlapping responses to IFN alpha and IFN gamma.
Resumo:
Intraperitoneal injection of epidermal growth factor into mice results in the appearance of multiple tyrosine-phosphorylated proteins in liver nuclei within minutes after administration. We have previously identified three of these proteins as Stat 1 alpha, Stat 1 beta (p91, p84), and Stat 3 (p89). In the present report we demonstrate that Stat 5 (p92), the recently described prolactin inducible transcription factor detected in mammary glands, is the major tyrosine-phosphorylated protein translocated to the nucleus in mouse liver in response to epidermal growth factor. Furthermore, gel-shift analysis and affinity purification revealed that Stat 5, Stat 1 alpha, and Stat 1 beta specifically bind to the prolactin inducible element upstream of the beta-casein promoter.
Resumo:
Gold(I) salts and selenite, which have diverse therapeutic and biological effects, are noted for their reactivity with thiols. Since the binding of Jun-Jun and Jun-Fos dimers to the AP-1 DNA binding site is regulated in vitro by a redox process involving conserved cysteine residues, we hypothesized that some of the biological actions of gold and selenium are mediated via these residues. In electrophoretic mobility-shift analyses, AP-1 DNA binding was inhibited by gold(I) thiolates and selenite, with 50% inhibition occurring at approximately 5 microM and 1 microM, respectively. Thiomalic acid had no effect in the absence of gold(I), and other metal ions inhibited at higher concentrations, in a rank order correlating with their thiol binding affinities. Cysteine-to-serine mutants demonstrated that these effects of gold(I) and selenite require Cys272 and Cys154 in the DNA-binding domains of Jun and Fos, respectively. Gold(I) thiolates and selenite did not inhibit nonspecific protein binding to the AP-1 site and were at least an order of magnitude less potent as inhibitors of sequence-specific binding to the AP-2, TFIID, or NF1 sites compared with the AP-1 site. In addition, 10 microM gold(I) or 10 microM selenite inhibited expression of an AP-1-dependent reporter gene, but not an AP-2-dependent reporter gene. These data suggest a mechanism regulating transcription factor activity by inorganic ions which may contribute to the known antiarthritic action of gold and cancer chemoprevention by selenium.
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation.
Resumo:
The abundance of delta-crystallin in the chicken eye lens provides an advantageous marker for tissue-specific gene expression during cellular differentiation. The lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, which binds a positive (delta EF2) and negative (delta EF1) factor in its core region. Here we show by DNase I footprinting, electrophoretic mobility-shift assays, and cotransfection experiments with the delta 1-promoter/enhancer fused to the chloramphenicol acetyltransferase reporter gene that the delta 1-crystallin enhancer has two adjacent functional Pax-6 binding sites. We also demonstrate by DNase I footprinting that the delta EF1 site can bind the transcription factor USF, raising the possibility that USF may cooperate with Pax-6 in activation of the chicken delta 1- and alpha A-crystallin genes. These data, coupled with our recent demonstration that Pax-6 activates the alpha A-crystallin gene, suggest that Pax-6 may have been used extensively throughout evolution to recruit and express crystallin genes in the lens.
Resumo:
Interferon alpha induction of transcription operates through interferon-stimulated-gene factor 3 (ISGF), a transcription factor two components of which are members of the newly characterized Stat family of transcription factors. Interferon alpha induces tyrosine phosphorylation of Stat1 and Stat2 proteins that associate and, together with a 48-kDa protein, form ISGF3. Evidence is presented that a heterodimer of Stat1 and Stat2 is present in ISGF3 and that Stat1 and the 48-kDa protein make precise contact, while Stat2 makes general contact, with the interferon-stimulated response element, the binding site of the ISGF3.
Resumo:
The transient expression of the retinoblastoma protein (Rb) regulates the transcription of a variety of growth-control genes, including c-fos, c-myc, and the gene for transforming growth factor beta 1 via discrete promoter sequences termed retinoblastoma control elements (RCE). Previous analyses have shown that Sp1 is one of three RCE-binding proteins identified in nuclear extracts and that Rb functionally interacts with Sp1 in vivo, resulting in the "superactivation" of Sp1-mediated transcription. By immunochemical and biochemical criteria, we report that an Sp1-related transcription factor, Sp3, is a second RCE-binding protein. Furthermore, in transient cotransfection assays, we report that Rb "superactivates" Sp3-mediated RCE-dependent transcription in vivo and that levels of superactivation are dependent on the trans-activator (Sp1 or Sp3) studied. Using expression vectors carrying mutated Rb cDNAs, we have identified two portions of Rb required for superactivation: (i) a portion of the Rb "pocket" (amino acids 614-839) previously determined to be required for physical interactions between Rb and transcription factors such as E2F-1 and (ii) a novel amino-terminal region (amino acids 140-202). Since both of these regions of Rb are targets of mutation in human tumors, our data suggest that superactivation of Sp1/Sp3 may play a role in Rb-mediated growth suppression and/or the induction of differentiation.
Resumo:
Este trabalho mostra o envolvimento do gene RECK no processo de progressão do ciclo celular. Foi verificado que a expressão endógena de RECK é modulada durante a progressão do ciclo celular. A superexpressão de RECK em fibroblastos normais de camundongo promove uma diminuição da capacidade proliferativa das células e um retardo da transição das fases G0/G1-S do ciclo celular. Além disso, os resultados sugerem que um dos possíveis mecanismos de ação de RECK, que promovem este processo, envolve a indução da expressão de um inibidor de CDK, especificamente de p21, e retardo da fosforilação de pRb. Os resultados indicam, ainda, que durante a progressão do ciclo celular a expressão do gene RECK apresenta uma correlação inversa com a expressão do proto-oncogene c-myc. Estes dados corroboram os dados da literatura que mostram RECK como um alvo para o produto de diversos oncogenes, como ras e c-myc. A caracterização da repressão de RECK por c-Myc mostrou que a mesma ocorre ao nível transcricional e que sítios Sp1, presentes no promotor de RECK, são essenciais para a ação de Myc. Dados adicionais sugerem que a repressão de RECK por c-Myc parece envolver mecanismos de desacetilação de histonas. A modulação da expressão de RECK também foi avaliada durante a progressão maligna de tumores do sistema nervoso central (especificamente, gliomas). Foi verificado que a expressão de RECK não é alterada com a progressão deste tipo de tumor. Porém, foi verificado que os pacientes que manifestaram um maior tempo de sobrevida apresentaram tumores com uma significativa maior expressão do gene RECK. Estes dados sugerem que RECK possa ser um possível marcador prognóstico. A caracterização da regulação da expressão de RECK, tanto em células normais como em diferentes tipos de tumores, assim como os alvos moleculares da sua ação, são pontos muito importantes para o entendimento dos mecanismos que controlam a proliferação celular e podem contribuir para o desenvolvimento de novas formas de terapia anti-tumoral.
Resumo:
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the down-stream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location Was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function. (C) 2003 by The American Society of Hematology.
Resumo:
Objectives: Long-term, low-dose macrolide therapy is effective in the treatment of chronic rhinosinusitis. It is believed that macrolide antibiotics produce this benefit through an anti-inflammatory effect. In this study, the effect of clarithromycin treatment on the expression of transforming growth factor (TGF)-beta and the key pro-inflammatory nuclear transcription factor, NF-kappaB, was examined in vitro and in vivo. Study Design and Methods: In vitro: nasal mucosa was obtained from 10 patients with chronic sinusitis and was cultured for 24 hours in the presence of clarithromycin or control. Cellular expression of TGF-beta and NF-kappaB was determined by immunohistochemistry. In vivo: 10 patients with chronic rhinosinusitis were treated for 3 months with clarithromycin. Nasal mucosal biopsies were taken pre- and posttreatment. Cellular expression of TGF-beta and NF-kappaB was again determined by immunohistochemistry. Results: Clarithromycin, when applied to nasal biopsies in vitro, reduced cellular expression of TGF-beta and NF-kappaB. Nasal biopsies taken before and after clarithromycin treatment showed no differences in cellular expression of NF-kappaB or TGF-beta. Conclusion: Clarithromycin can reduce cellular expression of TGF-beta and NF-kappaB when applied in vitro, but its action during clinical therapy is less clear. Clarithromycin is capable of inhibiting pro-inflammatory cytokines in vitro, and reductions of TGF-beta and NF-kappaB may represent additional mechanisms by which macrolides reduce inflammation in chronic airway disease. Discrepancies between the actions of clarithromycin on nasal biopsies in vitro and after clinical therapy warrant further investigation.
Resumo:
Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K-M for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0 +/- 0.7, suggesting a Na+:SO42- stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.