955 resultados para Solar cell
Resumo:
Background: Solar keratoses (SKs) are among the strongest determinants of skin cancer, but little is known about the success of measures to control these common skin tumors. Objective: To determine whether daily sunscreen application and/or beta carotene supplementation retards the rate of occurrence of SKs in adults in the medium term. Design: Randomized controlled trial conducted between February 1992 and August 1996. Setting: General community of the subtropical township of Nambour, Australia (latitude, 26degrees south). Participants: A total of 1621 adults aged 25 to 74 years. Interventions: Participants were randomized to daily use of sunscreen (application of a high-protection sunscreen to their head, neck, arms, and hands every morning) or application of sunscreen at their usual discretionary rate. They were also randomly assigned to take either one 30-mg tablet of beta carotene or one placebo tablet each day. Main Outcome Measure: Change in the prevalent number of SKs in the intervention group relative to change in the control group. Results: The ratio of SK counts in 1994 relative to 1992 was lower in people randomized to daily sunscreen use (1.20; 95% confidence interval, 1.04-1.39) than in those randomized to discretionary sunscreen use (1.57; 95% confidence interval, 1.35-1.84). This 24% reduction is equivalent to the prevention of an average of I additional SK per person over that time. A reduction in the rate of change of SK prevalence was also seen in the sunscreen intervention group relative to the discretionary sunscreen group between 1994 and 1996, but it was not significant. No effect on the rate of change of prevalent SK counts was seen among those taking beta carotene supplements relative. to those taking placebo tablets. Conclusions: Daily application of sunscreen retarded the rate of SK acquisition among adults in a subtropical environment, while a beta carotene supplementation of 30 mg/d had no influence on the occurrence of SKs.
Resumo:
The combination of elevated CO2 and the increased acidity in surface oceans is likely to have an impact on photosynthesis via its effects on inorganic carbon speciation and on the overall energetics of phytoplankton. Exposure to UV radiation (UVR) may also have a role in the response to elevated CO2 and acidification, due to the fact that UVR may variously impact on photosynthesis and because of the energy demand of UVR defense. The cell may gain energy by down-regulating the CO2 concentrating mechanism, which may lead to a greater ability to cope with UVR and/or higher growth rates. In order to clarify the interplay of cell responses to increasing CO2 and UVR, we investigated the photosynthetic response of the marine and estuarine diatom Cylindrotheca closterium f. minutissima cultured at either 390 (ambient) or 800 (elevated) ppmv CO2, while exposed to solar radiation with or without UVR (UVR, 280-400 nm). After a 6 day acclimation period, the growth rate of cells was little affected by elevated CO2 and no obvious correlation with the radiation dose (for both PAR and PAR + UV treatments) could be detected. However, the relative electron transport rate was reduced and was more sensitive to UVR in cells main - tained at elevated CO2 as compared to cells cultured at ambient CO2. The CO2 concentrating mechanism was down regulated at 800 ppmv CO2, but was apparently not completely switched off. These data are discussed with respect to their significance in the context of global climate change.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.