584 resultados para Soft contact lens
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Despite the evidence that Australia’s children are learning literacy, there is also significant evidence that the poorest and most disadvantaged children are being left behind. To date our understanding of the place of transitions in this has been limited, although there has been work on the fourth grade slump (Gee, 2000, 2008), the transition from primary years to secondary years (e.g. Bahr & Pendergast, 2007; Pendergast & Bahr, 2005, 2010), and transitions when changing schools (Henderson, 2008). In this chapter, we consider the notion of transitioning, as we unpack issues related to recognising and valuing student diversity and difference. We want to highlight ways of providing high quality and high equity literacy pedagogy and literacy outcomes for middle years students. We will also discuss the importance of recognising that students transit to schools and school learning from other significant contexts, each with their own combinations of literacy practices, rituals and values.
Resumo:
Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15mm while the MRI-based models contained an average error of 0.23mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.
Resumo:
CCTV and surveillance networks are increasingly being used for operational as well as security tasks. One emerging area of technology that lends itself to operational analytics is soft biometrics. Soft biometrics can be used to describe a person and detect them throughout a sparse multi-camera network. This enables them to be used to perform tasks such as determining the time taken to get from point to point, and the paths taken through an environment by detecting and matching people across disjoint views. However, in a busy environment where there are 100's if not 1000's of people such as an airport, attempting to monitor everyone is highly unrealistic. In this paper we propose an average soft biometric, that can be used to identity people who look distinct, and are thus suitable for monitoring through a large, sparse camera network. We demonstrate how an average soft biometric can be used to identify unique people to calculate operational measures such as the time taken to travel from point to point.
Resumo:
Probabilistic topic models have recently been used for activity analysis in video processing, due to their strong capacity to model both local activities and interactions in crowded scenes. In those applications, a video sequence is divided into a collection of uniform non-overlaping video clips, and the high dimensional continuous inputs are quantized into a bag of discrete visual words. The hard division of video clips, and hard assignment of visual words leads to problems when an activity is split over multiple clips, or the most appropriate visual word for quantization is unclear. In this paper, we propose a novel algorithm, which makes use of a soft histogram technique to compensate for the loss of information in the quantization process; and a soft cut technique in the temporal domain to overcome problems caused by separating an activity into two video clips. In the detection process, we also apply a soft decision strategy to detect unusual events.We show that the proposed soft decision approach outperforms its hard decision counterpart in both local and global activity modelling.
Resumo:
Background: To compare the intraocular pressure readings obtained with the iCare rebound tonometer and the 7CR non-contact tonometer with those measured by Goldmann applanation tonometry in treated glaucoma patients. Design: A prospective, cross sectional study was conducted in a private tertiary glaucoma clinic. Participants: 109 (54M:55F) patients including only eyes under medical treatment for glaucoma. Methods: Measurement by Goldmann applanation tonometry, iCare rebound tonometry and 7CR non-contact tonometry. Main Outcome Measures: Intraocular pressure. Results: There were strong correlations between the intraocular pressure measurements obtained with Goldmann and both the rebound and non-contact tonometers (Spearman r values ≥ 0.79, p < 0.001). However, there were small, statistically significant differences between the average readings for each tonometer. For the rebound tonometer, the mean intraocular pressure was slightly higher compared to the Goldmann applanation tonometer in the right eyes (p = 0.02), and similar in the left eyes (p = 0.93) however these differences did not reach statistical significance. The Goldmann correlated measurements from the noncontact tonometer were lower than the average Goldmann reading for both right (p < 0.001) and left (p > 0.01) eyes. The corneal compensated measurements from the non-contact tonometer were significantly higher compared to the other tonometers (p ≤ 0.001). Conclusions: The iCare rebound tonometer and the 7CR non-contact tonometer measure IOP in fundamentally different ways to the Goldmann applanation tonometer. The resulting IOP values vary between the instruments and will need to be considered when comparing clinical versus home acquired measurements.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, “to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice” (Gable et al, 2006). IS-Impact is defined as “a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups” (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the “impact” half includes Organizational-Impact and Individual-Impact dimensions; the “quality” half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalizable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employ perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalization of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. The objective of this study is to develop a Mandarin version IS-Impact model, encompassing a list of China-specific IS-Impact measures, aiding in a better understanding of the IS-Impact phenomenon in a Chinese organizational context. The IS-Impact model provides a much needed theoretical guidance for this investigation of ES and ES impacts in a Chinese context. The appropriateness and soundness of employing the IS-Impact model as a theoretical foundation are evident: the model originated from a sound theory of IS Success (1992), developed through rigorous validation, and also derived in the context of Enterprise Systems. Based on the IS-Impact model, this study investigates a number of research questions (RQs). Firstly, the research investigated what essential impacts have been derived from ES by Chinese users and organizations [RQ1]. Secondly, we investigate which salient quality features of ES are perceived by Chinese users [RQ2]. Thirdly, we seek to answer whether the quality and impacts measures are sufficient to assess ES-success in general [RQ3]. Lastly, the study attempts to address whether the IS-Impact measurement model is appropriate for Chinese organizations in terms of evaluating their ES [RQ4]. An open-ended, qualitative identification survey was employed in the study. A large body of short text data was gathered from 144 Chinese users and 633 valid IS-Impact statements were generated from the data set. A generally inductive approach was applied in the qualitative data analysis. Rigorous qualitative data coding resulted in 50 first-order categories with 6 second-order categories that were grounded from the context of Chinese organization. The six second-order categories are: 1) System Quality; 2) Information Quality; 3) Individual Impacts;4) Organizational Impacts; 5) User Quality and 6) IS Support Quality. The final research finding of the study is the contextualized Mandarin version IS-Impact measurement model that includes 38 measures organized into 4 dimensions: System Quality, information Quality, Individual Impacts and Organizational Impacts. The study also proposed two conceptual models to harmonize the IS-Impact model and the two emergent constructs – User Quality and IS Support Quality by drawing on previous IS effectiveness literatures and the Work System theory proposed by Alter (1999) respectively. The study is significant as it is the first effort that empirically and comprehensively investigates IS-Impact in China. Specifically, the research contributions can be classified into theoretical contributions and practical contributions. From the theoretical perspective, through qualitative evidence, the study test and consolidate IS-Impact measurement model in terms of the quality of robustness, completeness and generalizability. The unconventional research design exhibits creativity of the study. The theoretical model does not work as a top-down a priori seeking for evidence demonstrating its credibility; rather, the study allows a competitive model to emerge from the bottom-up and open-coding analysis. Besides, the study is an example extending and localizing pre-existing theory developed in Western context when the theory is introduced to a different context. On the other hand, from the practical perspective, It is first time to introduce prominent research findings in field of IS Success to Chinese academia and practitioner. This study provides a guideline for Chinese organizations to assess their Enterprise System, and leveraging IT investment in the future. As a research effort in ITPS track, this study contributes the research team with an alternative operationalization of the dependent variable. The future research can take on the contextualized Mandarin version IS-Impact framework as a theoretical a priori model, further quantitative and empirical testing its validity.
Resumo:
Stormwater pollution has been recognised as one of the main causes of aquatic ecosystem degradation and poses a significant threat to both the goal of ecological sustainable development as well as human health and wellbeing. In response, water sensitive urban design (WSUD) practices have been put forward as a strategy to mitigate the detrimental impacts of urban stormwater runoff quality and to safeguard ecosystem functions. However, despite studies that support its efficiency in urban stormwater management, the mainstreaming of WSUD remains a significant challenge. This paper proposes that viewing WSUD through the lens of the integrated urban metabolism framework which encourages an interdisciplinary approach and facilitates dialogue through knowledge transfer is a strategy in which the implementation of WSUD can be mainstreamed.
Practical improvements to simultaneous computation of multi-view geometry and radial lens distortion
Resumo:
This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.
Resumo:
Government programs to finance small firms or start-ups have attracted a little empirical attention. From an economical perspective, the effect of government grants is evaluated by a measure of innovation or firm productivity. Yet, this paper takes a different approach from economical view aiming to address the research question “How do start ups firms view the relationship between government grants and their co-efficient innovation effort?” Semi-structured interviews with grant recipients (start-up business owners revealed that the grants assist firms to leverage their resource limitations but at the same time the grants also act as a major roadblock for their product development success.
Resumo:
Magnetic Resonance Imaging was used to study changes in the crystalline lens and ciliary body with accommodation and aging. Monocular images were obtained in 15 young (19-29 years) and 15 older (60-70 years) emmetropes when viewing at far (6m) and at individual near points (14.5 to 20.9 cm) in the younger group. With accommodation, lens thickness increased (mean±95% CI: 0.33±0.06mm) by a similar magnitude to the decrease in anterior chamber depth (0.31±0.07mm) and equatorial diameter (0.32±0.04mm) with a decrease in the radius of curvature of the posterior lens surface (0.58±0.30mm). Anterior lens surface shape could not be determined due to the overlapping region with the iris. Ciliary ring diameter decreased (0.44±0.17mm) with no decrease in circumlental space or forward ciliary body movement. With aging, lens thickness increased (mean±95% CI: 0.97±0.24mm) similar in magnitude to the sum of the decrease in anterior chamber depth (0.45±0.21mm) and increase in anterior segment depth (0.52±0.23mm). Equatorial lens diameter increased (0.28±0.23mm) with no change in the posterior lens surface radius of curvature. Ciliary ring diameter decreased (0.57±0.41mm) with reduced circumlental space (0.43±0.15mm) and no forward ciliary body movement. Accommodative changes support the Helmholtz theory of accommodation including an increase in posterior lens surface curvature. Certain aspects of aging changes mimic accommodation.
Resumo:
Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.