974 resultados para Small world
Resumo:
Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.
Resumo:
A well-known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order v for all v equivalent to 1 or 3 (mod 6), v greater than or equal to 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order v < 2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. (C) 2002 Wiley Periodicals, Inc.