917 resultados para Slip
Resumo:
The work examines the change involving the Church in Tunisia from the period of the Protectorate to the present through the fundamental moments of independence (1956) and the signing of the ‘Modus vivendi’ (1964). In the first structure of the “modern” Church, a fundamental role was played by the complex figure of the French Cardinal Charles-Allemand Lavigerie who, while giving strong impulse to setting up disinterested charitable social initiatives by the congregations (Pères Blancs, Soeurs Blanches and others), also represented the ideal of the ‘evangelizing’ (as well as colonial) Church which, despite its declared will to avoid proselytism, almost inevitably tended to slip into it. During the French Protectorate (1881-1956) the ecclesiastic institution concentrated strongly on itself, with little heed for the sensitivity of its host population, and developed its activities as if it were in a European country. From the social standpoint, the Church was mostly involved in teaching, which followed the French model, and health facilities. In the Church only the Pères Blancs missionaries were sincerely committed to promoting awareness of the local context and dialogue with the Muslims. The Catholic clergy in the country linked its religious activity close to the policy of the Protectorate, in the hope of succeeding in returning to the ancient “greatness of the African Church”, as the Eucharistic Congress in Carthage in 1930 made quite clear. The Congress itself planted the first seed in the twentyfive- year struggle that led the Tunisian population to independence in 1956 and the founding of the Republic in 1957. The conquest of independence and the ‘Modus vivendi’ marked a profound change in the situation and led to an inversion of roles: the Catholic community was given the right to exist only on the condition that it should not interfere in Tunisian society. The political project of Bourguiba, who led the Republic from 1957 to 1987, aimed to create a strongly egalitarian society, with a separation between political and religious powers. In particular, in referring to the Church, he appeared as a secularist with no hostility towards the Catholics who were, however, considered as “cooperators”, welcome so long as they were willing to place their skills at the service of the construction of the state. So, in the catholic Community was a tension between the will of being on the side of the country and that of conserving a certain distance from it and not being an integral part of it. In this process of reflection, the role of the Second Vatican Council was fundamental: it spread the idea of a Church open to the world and the other religions, in particular to Islam: the teaching of the Council led the congregations present in the country to accept the new condition. This new Church that emerged from the Council saw some important events in the process of “living together”, of “cultural mixing” and the search for a common ground between different realities. The almost contemporary arrival of Arab bishops raised awareness among the Tunisians of the existence of Christian Arabs and, at the same time, the Catholic community began considering their faith in a different way. In the last twenty years the situation has continued to change. Side by side with the priests present for decades or even those born there, some new congregations have begun to operate, albeit in small numbers: they have certainly revitalized the community of the faithful, but they sometimes appear more devoted to service “within” the Church, than to services for the population, and are thus characterized by exterior manifestations of their religion. This sort of presence has made it possible for Bourguiba's successor, Ben Ali (president from 1987 to 2011), to practice forms of tolerance even more clearly, but always limited to formal relations; the Tunisians are still far from having a real understanding of the Catholic reality, with certain exceptions connected to relations on a personal and not structured plane, as was the case in the previous period. The arrival of a good number of young people from sub-Saharan Africa, most of all students, belonging to the JCAT, and personnel of the BAD has “Africanized” the Church in Tunisia and has brought about an increase in Christians' exterior manifestations; but this is a visibility that is not blatant but discreet, with the implicit risk of the Church continuing to be perceived as a sort of exterior body, alien to the country; nor can we say, lacking proper documentation, how it will be possible to build a bridge between different cultures through the “accompaniment” of Christian wives of Tunisians. Today, the Church is living in a country that has less and less need of it; its presence, in the schools and in health facilities, is extremely reduced. And also in other sectors of social commitment, such as care for the disabled, the number of clergymen involved is quite small. The ‘revolution’ in 2011 and the later developments up to the present have brought about another socio-political change, characterized by a climate of greater freedom, but with as yet undefinable contours. This change in the political climate will inevitable have consequences in Tunisia’s approach to religious and cultural minorities, but it is far too soon to discuss this on the historical and scientific planes.
Resumo:
We investigated adaptive neural control of precision grip forces during object lifting. A model is presented that adjusts reactive and anticipatory grip forces to a level just above that needed to stabilize lifted objects in the hand. The model obeys priciples of cerebellar structure and function by using slip sensations as error signals to adapt phasic motor commands to tonic force generators associated with output synergies controlling grip aperture. The learned phasic commands are weight and texture-dependent. Simulations of the new curcuit model reproduce key aspects of experimental observations of force application. Over learning trials, the onset of grip force buildup comes to lead the load force buildup, and the rate-of-rise of grip force, but not load force, scales inversely with the friction of the gripped object.
Resumo:
1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.
Resumo:
Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.
Resumo:
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.
Resumo:
A multi-phase framework is typically required for the CFD modelling of metals reduction processes. Such processes typically involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. The exchange of mass, momentum and energy between the phases is fundamental to these processes. Multi-phase algorithms are complex and can be unreliable in terms of either or both convergence behaviour or in the extent to which the physics is captured. In this contribution, we discuss these multi-phase flow issues and describe an example of each of the main “single phase” approaches to modelling this class of problems (i.e., Eulerian–Lagrangian and Eulerian–Eulerian). Their utility is illustrated in the context of two problems – one involving the injection of sparging gases into a steel continuous slab caster and the other based on the development of a novel process for aluminium electrolysis. In the steel caster, the coupling of the Lagrangian tracking of the gas phase with the continuum enables the simulation of the transient motion of the metal–flux interface. The model of the electrolysis process employs a novel method for the calculation of slip velocities of oxygen bubbles, resulting from the dissolution of alumina, which allows the efficiency of the process to be predicted.
Resumo:
The paper reports on the investigation of the rheological behaviour new lead-free solder pastes formulations for use in flip-chip assembly applications. The study is made up of three parts; namely the evaluation of the effect of plate geometry, the effect of temperature and processing environment and the effect of torsional frequencies on the rheological measurements. Different plate geometries and rheological tests were used to evaluate new formulations in terms of wall slip characteristics, linear viscoelastic region and shear thinning behaviour. A technique which combines the use of the creep-recovery and dynamic frequency sweep tests was used to further characterise the paste structure, rheological behaviour and the processing performance of the new paste formulations. The technique demonstrated in this study has wide utility for R & D personnel involved in new paste formulation, for implementing quality control procedures used in paste manufacture and packaging and for qualifying new flip-chip assembly lines
Resumo:
Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours
Resumo:
We have investigated the influence of the material properties of the silicon device layer on the generation of defects, and in particular slip dislocations, in trenched and refilled fusion-bonded silicon-on-insulator structures. A strong dependence of the ease of slip generation on the type of dopant species was observed, with the samples falling into three basic categories; heavily boron-doped silicon showed ready slip generation, arsenic and antimony-doped material was fairly resistant to slip, while silicon moderately or lightly doped with phosphorous or boron gave intermediate behavior. The observed behavior appears to be controlled by differences in the dislocation generation mechanism rather than by dislocation mobility. The introduction of an implanted buried layer at the bonding interface was found to result in an increase in slip generation in the silicon, again with a variation according to the dopant species. Here, the greatest slip occurred for both boron and antimony-implanted samples. The weakening of the implanted material may be related to the presence of a band of precipitates observed in the silicon near the bonding interface. (C) 2001 The Electrochemical Society.
Resumo:
Expansion of trinucleotide repeat DNA of the classes CAG�·CTG, CGG�·CCG and GAA�·TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG�·CTG > CGG�·CCG = GAA�·TTC, the highly flexible CAG�·CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G�·C to T�·A mutation at the 9th position of the CAG�·CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAGâ�¢CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.
Resumo:
An experimental investigation has been carried out into the effects of changes in plug design on the wall thickness distribution of thermoformed products. Plugs were machined with a series of geometrical variations and their effects on the process were measured. The overall results show that the plug has a crucial role in controlling the wall thickness distribution in thermoforming. Larger plugs tend to distribute more material to the base of the product, but the introduction of a small sidewall taper, base radius, or a reduction in plug diameter tend to lead to more balanced distributions. However, larger changes in any of the variables tend to destroy these benefits. It has also been demonstrated that the frictional and thermal properties of the plug are important in determining the deformation response of the sheet material. There is a clear evidence of slip in the sheet during plug contact and, although the cooling effect of the plug appears to be minimal, cooling in the highly deformed regions away from the plug appears to be a significant factor.
Resumo:
This paper reports on atomistic simulations of the interactions between the dominant lattice dislocations in ?-TiAl (<1 0 1] superdislocations) with all three kinds of ?/?-lamellar boundaries in polysynthetically twinned (PST) TiAl. The purpose of this study is to clarify the early stage of lamellar boundary controlled plastic deformation in PST TiAl. The interatomic interactions in our simulations are described by a bond order potential for L10-TiAl which provides a proper quantum mechanical description of the bonding. We are interested in the dislocation core geometries that the lattice produces in proximity to lamellar boundaries and the way in which these cores are affected by the elastic and atomistic effects of dislocation-lamellar boundary interaction. We study the way in which the interfaces affect the activation of ordinary dislocation and superdislocation slip inside the ?-lamellae and transfer of plastic deformation across lamellar boundaries. We find three new phenomena in the atomic-scale plasticity of PST TiAl, particularly due to elastic and atomic mismatch associated with the 60° and 120° ?/?-interfaces: (i) two new roles of the ?/?-interfaces, i.e. decomposition of superdislocations within 120° and 60° interfaces and subsequent detachment of a single ordinary dislocation and (ii) blocking of ordinary dislocations by 60° and 120° interfaces resulting in the emission of a twinning dislocation.
Resumo:
Key to various bone substitute scaffold production techniques is the development of free-flowing ceramic slurry with optimum theological properties. The aim is to achieve a colloidal suspension with as high a solid content as possible while maintaining a low viscosity which easily penetrates the pores of relevant sacrificial templates. The following investigation describes the optimization of a hydroxyapatite slip and demonstrates its potential application in scaffold production. Using predominantly spherical particles of hydroxyapatite of between 0.82 mu m and 16.2 mu m, coupled with a 2 wt % addition of the anionic polyelectrolyte, ammonium polyacrylate, an 80 wt % (55.9 vol %) hydroxyapatite solid loaded slip with a viscosity of approximately 126 mPa s has been developed. Its ability to infiltrate and replicate porous preforms has been shown using polyurethane foam. The enhanced particle packing achieved has allowed for the production of scaffolds with highly dense and uniform grain structures. The results represent a significant improvement in current slurry production techniques and can be utilized to develop high-density ceramic bone substitute scaffolds.
Resumo:
This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.
Resumo:
This article first considers the significance of historical experience in academic studies, including postcolonial studies, concluding with Jane M. Jacobs that “the structures of power that gave rise to empire live on in a more disorganised fashion.” They live on in an organized way, too, in that many islands remain in a colonial relationship, being simultaneously colonial and postcolonial, although having tended “to slip the net of postcolonial theorising.” The article attempts to help fill this gap, especially through consideration of Brian Rourke’s ideas on cultural imposition applied to dependent islands and through investigation of why some islands have not progressed to independence. Case study detail is presented, especially for Bermuda and the Falkland Islands.