968 resultados para Size-distribution Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of particulate systems is of great interest in many fields of science and technology. Soil, sediments, powders, granular materials, colloidal and particulate suspensions are examples of systems involving many size particles. For those systems, the statistical description of the particle size distribution (PSD), that is, the mathematical distribution that defines the relative amounts of particles present, sorted according to size, is a crutial issue. The PSD can be important in understanding soil hydraulic properties, the geological origin or sediments or the physical and chemical properties of granular materials and ceramics, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, translating information about hydrologic and soil properties and processes across scales has emerged as a major theme in soil science and hydrology, and suitable theories for upscaling or downscaling hydrologic and soil information are being looked forward. The recognition of low-order catchments as self-organized systems suggests the existence of a great amount of links at different scales between their elements. The objective of this work was to research in areas of homogeneous bedrock material, the relationship between the hierarchical structure of the drainage networks at hillslope scale and the heterogeneity of the particle-size distribution at pedon scale. One of the most innovative elements in this work is the choice of the parameters to quantify the organization level of the studied features. The fractal dimension has been selected to measure the hierarchical structure of the drainage networks, while the Balanced Entropy Index (BEI) has been the chosen parameter to quantify the heterogeneity of the particle-size distribution from textural data. These parameters have made it possible to establish quantifiable relationships between two features attached to different steps in the scale range. Results suggest that the bedrock lithology of the landscape constrains the architecture of the drainage networks developed on it and the particle soil distribution resulting in the fragmentation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, translating information about hydrologic and soil properties and processes across scales has emerged as a major theme in soil science and hydrology, and suitable theories for upscaling or downscaling hydrologic and soil information are being looked forward. The recognition of low-order catchments as self-organized systems suggests the existence of a great amount of links at different scales between their elements. The objective of this work was to research in areas of homogeneous bedrock material, the relationship between the hierarchical structure of the drainage networks at hillslope scale and the heterogeneity of the particle-size distribution at pedon scale. One of the most innovative elements in this work is the choice of the parameters to quantify the organization level of the studied features. The fractal dimension has been selected to measure the hierarchical structure of the drainage networks, while the Balanced Entropy Index (BEI) has been the chosen parameter to quantify the heterogeneity of the particle-size distribution from textural data. These parameters have made it possible to establish quantifiable relationships between two features attached to different steps in the scale range. Results suggest that the bedrock lithology of the landscape constrains the architecture of the drainage networks developed on it and the particle soil distribution resulting in the fragmentation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology, fluorescence-intensity distribution analysis, has been developed for confocal microscopy studies in which the fluorescence intensity of a sample with a heterogeneous brightness profile is monitored. An adjustable formula, modeling the spatial brightness distribution, and the technique of generating functions for calculation of theoretical photon count number distributions serve as the two cornerstones of the methodology. The method permits the simultaneous determination of concentrations and specific brightness values of a number of individual fluorescent species in solution. Accordingly, we present an extremely sensitive tool to monitor the interaction of fluorescently labeled molecules or other microparticles with their respective biological counterparts that should find a wide application in life sciences, medicine, and drug discovery. Its potential is demonstrated by studying the hybridization of 5′-(6-carboxytetramethylrhodamine)-labeled and nonlabeled complementary oligonucleotides and the subsequent cleavage of the DNA hybrids by restriction enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study very large sizes, 483. A finite-size scaling analysis indicates that the data are compatible with the most economical scenario: a common transition temperature for spins and chiralities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell concentration and size distribution of the microalgae Nannochloropsis gaditana were studied over the whole growth process. Various samples were taken during the light and dark periods the algae were exposed to. The distributions obtained exhibited positive skew, and no change in the type of distribution was observed during the growth process. The size distribution shifted to lower diameters in dark periods while in light periods the opposite occurred. The overall trend during the growth process was one where the size distribution shifted to larger cell diameters, with differences between initial and final distributions of individual cycles becoming smaller. A model based on the Logistic model for cell concentration as a function of time in the dark period that also takes into account cell respiration and growth processes during dark and light periods, respectively, was proposed and successfully applied. This model provides a picture that is closer to the real growth and evolution of cultures, and reveals a clear effect of light and dark periods on the different ways in which cell concentration and diameter evolve with time.