883 resultados para Sintering additives
Resumo:
In this work the effects of time and temperature of thermal treatments under reducing atmosphere (H2) on PtRu/C catalysts for the hydrogen oxidation reaction (HOR) in the presence of CO on a proton exchange membrane fuel cell (PEMFC) single cells have been studied. It can be seen that the increase of the treatment temperature leads to an increasing sintering of the catalyst particles with reduction of the active area, although the catalyst treated at 550 ºC presents more CO tolerance for the HOR.
Determinação de misturas de sulfametoxazol e trimetoprima por espectroscopia eletrônica multivariada
Resumo:
In this work a multivariate spectroscopic methodology is proposed for quantitative determination of sulfamethoxazole and trimethoprim in pharmaceutical associations. The multivariate model was developed by partial least-squares regression, using twenty synthetic mixtures and the spectral region between 190 and 350 nm. In the validation stage, which involved the analysis of five synthetic mixtures, prediction errors lower that 3% were observed. The predictive capacity of the multivariate models is seriously affected by spectral changes induced by pH variations, a fact that acquires a great significance in the analysis of real samples (pharmaceuticals) that contain chemical additives.
Resumo:
Edible films are thin materials based on biopolymers and food additives. The aim of this work is a review on the application of dynamic mechanical analysis in edible film technology. After a brief review of the linear visco-elasticity theory, a description of some practical aspects related to dynamic mechanical analysis, such as sample fixation and sample dehydration during analysis and types and modes of tests are presented. Thus, the use of temperature scanning analysis for glass transition and for plasticizer-biopolymer compatibility studies and frequency scanning tests, less common in edible film technology, are critically reviewed.
Resumo:
Painelajittelu on yksi yleisimmistä yksikköprosesseista paperin ja sellun valmistuksessa. Suurelta osin lajittimet toimivat niille asetettujen vaatimusten mukaisesti, mutta joissakin tapauksissa lajittimissa saattaa esiintyä ei-toivottavaa kuitujen kasautumista sekä kehräymän muodostusta. Niiden seurauksena lajittimien kapasiteetti alenee ja lajittelutulos heikkenee. Tämän työn tarkoituksena on uutta kuvantamistekniikkaa hyödyntäen selvittää miten kehräymät ja kuitukasaumat syntyvät painelajittimen sihtipinnalla ja miten retentioaineen syöttö sihdin ympäristössä vaikuttaa niiden syntyyn. Työn kirjallisuusosassa tarkastellaan painelajittimen toimintaa, rakennetta sekä lyhyen kierron konesihdin erityispiirteitä. Lisäksi tarkastellaan retentiokemikaalien käyttäytymistä leikkausvoimien alaisuudessa ja kuitukehräymien syntyä painelajittimissa. Kokeellisessa osassa on raportoitu kuvantamisjärjestelmällä saatuja tuloksia sekä esitetään havaintoja kehräymien ja kuitukasaumien synnystä ja niiden vaikutuksista painelajittimen toimintaan. Kuvausten perusteella voidaan sanoa, että kehräymän syntyminen sihdissä vaatii aina jonkinlaisen kuitukasauman olemassaoloa. Tällaista alkukasaumaa tarvitaan, jotta kuidut voivat ankkuroitua siihen kiinni ja johon kiinnittyneenä kuidut alkavat pyöriä virtauksessa muodostaen kehräymää. Kuitukasauman muodostuminen painelajittimessa johtuu pääosin sihdissä olevasta epäjatkuvuuskohdasta, massassa olevista epäpuhtauksista ja kuituflokeista jotka jäävät kiinni sihtipinnan aukkoihin tai lajittimen kapasiteetin ylittymisestä. Kehräymän syntyä kasauman jäljessä voidaan pitää enemmän sääntönä kuin poikkeuksena, mutta kehräytyminen on vähäisempää reikäsihdillä kuin rakosihdillä. Silloituspolymeerillä flokattu massa ei muodosta herkemmin kuitukasaumia sihtipintaan verrattuna flokkaamattomaan massaan. Lajiteltavan massan sakeuden nosto vähentää kuitukasaumien ja kehräymien syntyä. Kuitukasaumien ja kehräymien välttämiseksi on tärkeää, että sihtiä ei ajeta suunniteltua mitoitusaluetta suuremmilla tuotannoilla tai virtauksilla.
Resumo:
Polymeric materials are widely used in the chemical industry and are part of our daily lives. Inorganic species may be added to them as additives, anti-oxidizing agents, stabilizers, plasticizers, colorants and catalysts and may be present in a wide range of concentrations. Their determination demands the development of analytical methods considering different kinds of polymeric materials, their composition and the final use of the material. Although many different analytical techniques may be used, this review emphasizes those based on atomic absorption and emission spectrometry. Solid sampling techniques and digestion methods are described and discussed and compared considering published results.
Resumo:
KSr2Nb5O15 is a ferroelectric material. The sintering process of the KSr2Nb5O15 ceramic doped with different amounts of CuO was investigated in this research. It was found that CuO is effective as promoter of the densification process of the KSN ceramic. The developed microstructures were different due to the amount of CuO and secondary phases were observed in the microstructures. However, the results of X - ray diffraction showed that only the tetragonal tungsten bronze (TTB) structure was identified in all the investigated ceramic systems. The thermal behavior of CuO and also of the CuO - KSN phase mixture was investigated by thermal analysis.
Resumo:
This work describes the development of a home-made capillary electrophoresis (CE) system based on the capacitively coupled contactless conductivity detection (C4D) for the separation of the metallic species Zn2+, Cr3+, Pb2+, Cd2+, Co2+, Cu2+, Ni2+ e Tl+. A background electrolyte composed of MES/Histidine 0,02 mol L-1 (pH 5.0) was optimized for the separation of the metallic species by using organic solvents and complexing agents as additives. The system allowed the determination of the metallic species using MES/Histidine 0,02 mol L-1 and methanol 5% (pH 5.0) as a background electrolyte, 15 kV separation voltage and hydrodynamic injection by gravity.
Determinação do ponto de névoa em surfactantes não iônicos por espectroscopia de impedância elétrica
Resumo:
In this paper, we analyze the use of electrical impedance spectroscopy applied to determination of cloud point. The slope of admittance measured at 100 kHz is reduced to temperature above the critical value which characterizes the phase transition, in a strong indication that this process is activated during the clouding. Additionally to this study we explored the influence of parameters such as additives and temperature on the performance of phase separation of residues (silver nanoparticles) by cloud point extraction. The interaction with salt maximizes the separation of chemical residues in a progressively reduced temperature.
Resumo:
Most compounds reinforcements have been used to improve thermals, mechanical and barrier properties of biopolymers films, whose performance is usually poor when compared to those of synthetic polymers. Biodegradables films have been developed by adding mango and acerola pulps in different concentrations (0-17,1% w/w) as antioxidants active compounds to cassava starch based biodegradable films. The effect of pulps was studied in terms of tensile properties, water vapor permeability, DSC, among other analysis of the films. The study demonstrated that the properties of cassava starch biodegradable films can be significantly altered through of incorporation mango and acerola pulps.
Resumo:
Ion exchange method was employed by means of surface modification of the glass powders of LZSA (Li2O-ZrO2-SiO2-Al2O3) system submitted to a 70wt% NaNO3/30wt% NaSO4 bath salt followed by a heat treatment. Chemical analysis by X-ray fluorescence was used to evaluate the efficiency of ion exchange, while optical dilatometry was employed to evaluate sintering of compacts. Evaluation of the structure of sintered bodies was made by scanning electron microscopy. Substitution of Li+ ions by Na+ ions on the surface of powders during heat treatments of 450 and 600 ºC for 2-10 h promoted an increase in densification of the sintered bodies.
Resumo:
Omega-3 enriched partial acylglycerols are beneficial for human health. The aim of this study was to obtain monoacylglycerols (MAG) and diacylglycerols (DAG) by means of glycerolysis of fish oil catalyzed by a lipase from Rhizomucor miehei in the presence of food grade surfactants (Tween 65, 80 or 85). Glycerolysis was successful in the reaction media for all the tested surfactants, showing their potential for use as additives in such a system. The best results, however, were obtained for the reaction medium in the absence of surfactant whose peroxide value was the lowest after glycerolysis.
Resumo:
In this work, the preparation and characterization of materials such as zirconium oxide (ZrO2) and phosphotungstic acid promoted zirconium oxide (ZrO2-H3PW12O40) is presented. Physico-chemical characterization results showed that addition of H3PW12O40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO2 matrix delayed the sintering of the material and stabilized ZrO2 in the tetragonal phase. ZrO2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO2-H3PW12O40 catalyst was active for n-pentane isomerization at 250 °C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity.
Resumo:
This work shows the application of ¹H NMR spectroscopy and chemometrics for quality control of grape juice. A wide range of quality assurance parameters were assessed by single ¹H NMR experiments acquired directly from juice. The investigation revealed that conditions and time of storage should be revised and indicated on all labels. The sterilization process of homemade grape juices was efficient, making it possible to store them for long periods without additives. Furthermore, chemometric analysis classified the best commercial grape juices to be similar to homemade grape juices, indicating that this approach can be used to determine the authenticity after adulteration.
Resumo:
Enzyme-support strategies are increasingly replacing conventional chemical methods in both laboratories and industries with attributes including efficiency, higher performance and multifarious use, where silica surfaces show potential due to the chemical bonds based on the presence of hydroxyl groups which can be modified with different additives. Surface-modified silica is a novel class of materials capable of improving enzyme stability and reusability that can be applied to support several immobilization techniques. This review describes the use of innovative modified supports to improve the state of enzyme immobilization and provide the industrial sector with new perspectives.
Resumo:
Microemulsions (MEs) are thermodynamically stable systems consisting of nanosized droplets dispersed in a solvent continuous medium (known as pseudo-phase), which is immiscible with the dispersed phase. These systems consist of water, a hydrophobic solvent called "oil," an amphiphile and often, a co-surfactant that is normally a medium chain alcohol. A large number of publications describe the importance of MEs in many branches of chemistry, and there is an intensive search for new applications. In addition, MEs have been applied in many areas, including oil extraction, removal of environmental pollutants from soils and effluents, dissolution of additives in lubricants and cutting oils, cleaning processes, dyeing and textile finishing, as nanoreactors to obtain nanoparticles of metals, semiconductors, superconductors, magnetic and photographic materials, and latex. However, only some studies indicate the potential applications of MEs in food and even fewer evaluate their chemical behavior. Potential applications of MEs in food comprise dissolution of lipophilic additives, stabilization of nutrients and biologically active compounds, using as an antimicrobial agent and to maximize the efficiency of food preservatives. This work consists of a literature review focusing on composition and physical and chemical characteristics of microemulsions. Despite the small number of studies on the subject reported in the literature, we demonstrate some potential applications of MEs in food chemistry.