982 resultados para Simulations, Quantum Models, Resonant Tunneling Diode
Resumo:
Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene.
Resumo:
In this paper, Bond Graphs are employed to develop a novel mathematical model of conventional switched-mode DC-DC converters valid for both continuous and discontinuous conduction modes. A unique causality bond graph model of hybrid models is suggested with the operation of the switch and the diode to be represented by a Modulated Transformer with a binary input and a resistor with fixed conductance causality. The operation of the diode is controlled using an if-then function within the model. The extracted hybrid model is implemented on a Boost and Buck converter with their operations to change from CCM to DCM and to return to CCM. The vector fields of the models show validity in a wide operation area and comparison with the simulation of the converters using PSPICE reveals high accuracy of the proposed model, with the Normalised Root Means Square Error and the Maximum Absolute Error remaining adequately low. The model is also experimentally tested on a Buck topology.
Resumo:
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one-fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models, but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high and low rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
Resumo:
We analyse the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-industrial (piControl) and mid-Holocene (midHolocene, 6 yr BP) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but overestimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene, the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows most models underestimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl have only a limited influence on midHolocene anomalies in ocean–atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
Model projections of heavy precipitation and temperature extremes include large uncertainties. We demonstrate that the disagreement between individual simulations primarily arises from internal variability, whereas models agree remarkably well on the forced signal, the change in the absence of internal variability. Agreement is high on the spatial pattern of the forced heavy precipitation response showing an intensification over most land regions, in particular Eurasia and North America. The forced response of heavy precipitation is even more robust than that of annual mean precipitation. Likewise, models agree on the forced response pattern of hot extremes showing the greatest intensification over midlatitudinal land regions. Thus, confidence in the forced changes of temperature and precipitation extremes in response to a certain warming is high. Although in reality internal variability will be superimposed on that pattern, it is the forced response that determines the changes in temperature and precipitation extremes in a risk perspective.
Resumo:
This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
Resumo:
This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.
Resumo:
Substantial biases in shortwave cloud forcing (SWCF) of up to ±30 W m−2are found in the midlatitudes of the Southern Hemisphere in the historical simulations of 34 CMIP5 coupled general circulation models. The SWCF biases are shown to induce surface temperature anomalies localized in the midlatitudes, and are significantly correlated with the mean latitude of the eddy-driven jet, with a negative SWCF bias corresponding to an equatorward jet latitude bias. Aquaplanet model experiments are performed to demonstrate that the jet latitude biases are primarily induced by the midlatitude SWCF anomalies, such that the jet moves toward (away from) regions of enhanced (reduced) temperature gradients. The results underline the necessity of accurately representing cloud radiative forcings in state-of-the-art coupled models.
Resumo:
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the spread in projections of SIT and reveals the significant contributions of climate internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to reduce spread in climate projections more generally.
Resumo:
The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975–2014.
Resumo:
Structural differences among models account for much of the uncertainty in projected climate changes, at least until the mid-twenty-first century. Recent observations encompass too limited a range of climate variability to provide a robust test of the ability to simulate climate changes. Past climate changes provide a unique opportunity for out-of-sample evaluation of model performance. Palaeo-evaluation has shown that the large-scale changes seen in twenty-first-century projections, including enhanced land–sea temperature contrast, latitudinal amplification, changes in temperature seasonality and scaling of precipitation with temperature, are likely to be realistic. Although models generally simulate changes in large-scale circulation sufficiently well to shift regional climates in the right direction, they often do not predict the correct magnitude of these changes. Differences in performance are only weakly related to modern-day biases or climate sensitivity, and more sophisticated models are not better at simulating climate changes. Although models correctly capture the broad patterns of climate change, improvements are required to produce reliable regional projections.
Resumo:
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.
Resumo:
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.