925 resultados para Signaling cascades


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avec plus de 100000 transplantations d'organes solides (TOS) par année dans le monde, la transplantation d'organes reste actuellement l'un des meilleurs traitements disponibles pour de nombreuses maladies en phase terminale. Bien que les médicaments immunosuppresseurs couramment utilisés soient efficaces dans le contrôle de la réponse immune engendrant le rejet aigu d'une greffe, la survie du greffon à long terme ainsi que la présence d'effets secondaires indésirables restent un enjeu considérable en clinique. C'est pourquoi il est nécessaire de trouver de nouvelles approches thérapeutiques innovantes permettant de contrôler la réponse immunitaire et ainsi d'améliorer les résultats à long terme. L'utilisation des lymphocytes T régulateurs (Treg), suppresseurs naturels de la réponse inflammatoire, a fait l'objet de nombreuses études ces dix dernières années, et pourrait être considérée comme un moyen intéressant d'améliorer la tolérance immunologique de la greffe. Cependant, l'un des obstacles de l'utilisation des Treg comme agent thérapeutique est leur nombre insuffisant non seulement en conditions normales, mais en particulier lors d'une forte réponse immune avec expansion de cellules immunitaires alloréactives. En raison des limitations techniques connues pour l'induction des Treg ex-vivo ou in vitro, nous avons dédié la première partie du travail de thèse à la détermination de l'efficacité de l'induction des Treg in vivo grâce à l'utilisation d'un complexe protéique IL-2/JES6-1 (IL2c). Nous avons montré que l'expansion des Treg par IL2c permettait d'augmenter la survie du greffon sur un modèle murin de transplantation de peau avec mismatch entre le donneur et le receveur pour le complexe majeur d'histocompatibilité (CMH). De plus, nous avons vu qu'en combinant IL2c à une inhibition à court terme de la voie de co-stimulation CD40L-CD40 (anti-CD154/MRl, administré au moment de la transplantation) pour empêcher l'activation des lymphocytes T, il est possible d'induire une tolérance robuste à long terme. Finalement, nos résultats soulignent l'importance de cibler une voie de co-stimulation bien particulière. En effet, l'utilisation d'IL2c combinée au blocage de la co-stimulation CD28-B7.1/2 (CTLA-4 Ig) n'induit qu'une faible prolongation de la survie de la greffe et n'induit pas de tolérance. L'application chez l'humain des traitements induisant la tolérance dans des modèles expérimentaux murins ou de primates n'a malheureusement pas montré de résultats probants en recherche clinique ; une des principales raisons étant la présence de lymphocytes B et T mémoires provenant du systeme d immunité acquise. C est pourquoi nous avons testé si la combinaison d'IL2c et MR1 améliorait la survie de la greffe dans des souris pré¬sensibilisées. Nous avons trouvé qu'en présence de lymphocytes B et T mémoires alloréactifs, l'utilisation d'IL2c et MR1 permettait une amélioration de la survie de la greffe de peau des souris immunocompétentes mais comparé aux souris receveuses naïves, aucune tolérance n'a pu être induite. Toutefois, l'ajout d'un traitement anti-LFA-1 (permettant de bloquer la circulation des lymphocytes T activées) a permis d'améliorer de manière significative la survie de la greffe. Cependant, le rejet chronique, dû à la présence de lymphocytes B activés/mémoires et la production d'anticorps donneur-spécifiques, n'a pas pu être évité. Cibler l'activation des lymphocytes T est la stratégie immunothérapeutique prépondérente après une TOS. C'est pourquoi dans la deuxième partie de cette thèse nous nous sommes intéressés au système de signalisation d'un récepteur des lymphocytes T qui dépend de la paracaspase Malti en tant que nouvelle stratégie immunosuppressive pour le contrôle des lymphocytes T alloréactifs. Nous avons montré que bien que l'inhibition de la signalisation du lymphocyte T en aval de Malti induise une tolérance envers un greffon de peau avec incompatibilités antigéniques mineures, cela ne permet cependant qu'une régulation partielle de l'alloréponse contre des antigènes du CMH. Nous nous sommes aussi intéressés spécifiquement à l'activité protéolytique de Malti. L'inhibition constitutive de l'activité protéolytique de Malti chez les souris Malti-ki s'est révélée délétère pour l'induction de la tolérance car elle diminue la fonction des Treg et augmente l'alloréactivité des cellules Thl. Cependant, lors de l'utilisation d'un inhibiteur peptidique de l'activité protéase de Malti in vitro, il a été possible d'observer une atténuation de l'alloéactivité des lymphocytes T ainsi qu'un maintien de la population des Treg existants. Ces résultats nous laissent penser que des études plus poussées sur le rôle de la signalisation médiée par Malti seraient à envisager dans le domaine de la transplantation. En résumé, les résultats obtenus durant cette thèse nous ont permis d'élucider certains mécanismes immunologiques propres à de nouvelles stratégies thérapeutiques potentielles dont le but est d'induire une tolérance lors de TOS. De plus, ces résultats nous ont permis de souligner l'importance d'utiliser des modèles davantage physiologiques contenant, notamment en tenant compte des lymphocytes B et T mémoires alloréactifs. -- Organ transplantation remains the best available treatment for many forms of end-stage organ diseases, with over 100,000 solid organ transplantations (SOT) occurring worldwide eveiy year. Although the available immunosuppressive (IS) drugs are efficient in controlling acute immune activation and graft rejection, the off-target side effects as well as long-term graft and patient survival remain a challenge in the clinic. Hence, innovative therapeutic approaches are needed to improve long-term outcome across immunological barriers. Based on extensive experimental data obtained over the last decade, it is tempting to consider immunotherapy using Treg; the natural suppressors of overt inflammatory responses, in promoting transplantation tolerance. The first hurdle for the therapeutic use of Treg is their insufficient numbers in non- manipulated individuals, in particular when facing strong immune activation and expanding alloreactive effector cells. Because of the limitations associated with current protocols aiming at ex-vivo expansion or in vitro induction of Treg, the aim of the first part of this thesis was to determine the efficacy of direct in vivo expansion of Treg using the IL-2/JES6- 1 immune complex (IL2c). We found that whilst IL2c mediated Treg expansion alone allowed the prolonged graft survival of fìlli MHC-mismatched skin grafts, its combination with short-term CD40L-CD40 co-stimulation blockade (anti-CD 154/MR1) to inhibit T cell activation administered at the time of transplantation was able to achieve long-term robust tolerance. This study also highlighted the importance of combining Treg based therapies with the appropriate co-stimulation blockade as a combination of IL2c and CD28-B7.1/2 co- stimulation blockade (CTLA-4 Ig) only resulted in slight prolongation of graft survival but not tolerance. The translation of tolerance induction therapies modelled in rodents into non-human primates or into clinical trials has seldom been successful. One main reason being the presence of pre-existing memory T- and B-cells due to acquired immunity in humans versus laboratory animals. Hence, we tested whether IL2c+MRl could promote graft survival in pre-sensitized mice. We found that in the presence of alloreactive memory T- and B-cells, IL2c+MRl combination therapy could prolong MHC-mismatched skin graft survival in immunocompetent mice but tolerance was lost compared to the naïve recipients. The addition of anti-LF A-1 treatment, which prevents the trafficking of memory T cells worked synergistically to significantly further enhance graft survival. However, late rejection mediated by activated/memory B cells and persistent donor-specific alloantibodies still occurred. Immunotherapeutic strategies targeting the activation of T cells are the cornerstone in the current immunosuppressive management after SOT. Therefore, in the next part of this thesis we investigated the paracaspase Malti-dependent T-cell receptor signalling as a novel immunosuppressive strategy to control alloreactive T cells in transplantation. We observed that although the inhibition of Malti downstream T signalling lead to tolerance of a minor H- mismatch skin grafts, it was however not sufficient to regulate alloresponses against MHC mismatches and only prolonged graft survival. Furthermore, we investigated the potential of more selectively targeting the protease activity of Malti. Constitutive inhibition of Malti protease activity in Malti-ki mice was detrimental to tolerance induction as it diminished Treg function and increased Thl alloreactivity. However, when using a small peptide inhibitor of Malti proteolytic activity in vitro, we observed an attenuation of alloreactive T cells and sparing of the pre-existing Treg pool. This indicates that further investigation of the role of Malti signalling in the field of transplantation is required. Collectively, the findings of this thesis provide immunological mechanisms underlying novel therapeutic strategies for the promotion of tolerance in SOT. Moreover, we highlight the importance of testing tolerance induction therapies in more physiological models with pre-existing alloreactive memory T and B cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Letter to the Editor on Wang M, Wang Q, Wang Z, Zhang X, Pan Y. The molecular evolutionary patterns of the insulin/FOXO signaling pathway

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still unknown. In this study, we showed that disruption of the gene that encodes VGLUT3 (Slc17a8) markedly increased cocaine self-administration in mice. Concomitantly, the amount of dopamine (DA) release was strongly augmented in the NAc of VGLUT3(-/-) mice because of a lack of signaling by metabotropic glutamate receptors. Furthermore, dendritic spines and glutamatergic synaptic transmission on medium spiny neurons were increased in the NAc of VGLUT3(-/-) mice. Increased DA and glutamate signaling in the NAc are hallmarks of addiction. Our study shows that TANs use glutamate to reduce DA release and decrease reinforcing properties of cocaine in mice. Interestingly, we also observed an increased frequency of rare variations in SLC17A8 in a cohort of severe drug abusers compared with controls. Our findings identify VGLUT3 as an unexpected regulator of drug abuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that differentiation of Th17 cells is promoted by activation of STAT3 and inhibited by activation of STAT1. Although both transcription factors are activated by several cytokines, including IL-6, IL-21, and IL-27, each of these cytokines has a very different effect on Th17 differentiation, ranging from strong induction (IL-6) to strong inhibition (IL-27). To determine the molecular basis for these differences, we measured STAT3 and STAT1 activation profiles for IL-6, IL-21, and IL-27, as well as for cytokine pairs over time. We found that the ratio of activated STAT3/activated STAT1 is crucial in determining whether cytokines promote or inhibit Th17 differentiation. IL-6 and IL-21 induced p-STAT3/p-STAT1 ratios > 1, leading to the promotion of Th17 differentiation, whereas IL-27 or IL-6+IL-27 induced p-STAT3/p-STAT1 ratios < 1, resulting in inhibition of Th17 differentiation. Consistent with these findings, we show that IL-27 induces sufficient p-STAT3 to promote Th17 differentiation in the absence of STAT1. Furthermore, IL-27-induced STAT1-deficient T cells were indistinguishable from bona fide highly proinflammatory Th17 cells because they induced severe experimental autoimmune encephalomyelitis upon adoptive transfer. Our results suggest that the ratio of p-STAT3/p-STAT1 induced by a cytokine or cytokine pairs can be used to predict whether they induce a competent Th17-differentiation program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. METHODS: Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. RESULTS: Immunohistochemical analysis showed an improved prognosis of ALDH1A2(high) OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2(high)CRABP2(high) staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. CONCLUSIONS: This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2(low) tumors might benefit from adjuvant treatment with retinoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signalng sources share the same receptor and provides the tools for their characterization.