939 resultados para Shrimps - Classification - Molecular aspects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macromolecular transport systems in bacteria currently are classified by function and sequence comparisons into five basic types. In this classification system, type II and type IV secretion systems both possess members of a superfamily of genes for putative NTP hydrolase (NTPase) proteins that are strikingly similar in structure, function, and sequence. These include VirB11, TrbB, TraG, GspE, PilB, PilT, and ComG1. The predicted protein product of tadA, a recently discovered gene required for tenacious adherence of Actinobacillus actinomycetemcomitans, also has significant sequence similarity to members of this superfamily and to several unclassified and uncharacterized gene products of both Archaea and Bacteria. To understand the relationship of tadA and tadA-like genes to those encoding the putative NTPases of type II/IV secretion, we used a phylogenetic approach to obtain a genealogy of 148 NTPase genes and reconstruct a scenario of gene superfamily evolution. In this phylogeny, clear distinctions can be made between type II and type IV families and their constituent subfamilies. In addition, the subgroup containing tadA constitutes a novel and extremely widespread subfamily of the family encompassing all putative NTPases of type IV secretion systems. We report diagnostic amino acid residue positions for each major monophyletic family and subfamily in the phylogenetic tree, and we propose an easy method for precisely classifying and naming putative NTPase genes based on phylogeny. This molecular key-based method can be applied to other gene superfamilies and represents a valuable tool for genome analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasielastic incoherent neutron scattering from hydrogen atoms, which are distributed nearly homogeneously in biological molecules, allows the investigation of diffusive motions occurring on the pico- to nanosecond time scale. A quasielastic incoherent neutron scattering study was performed on the integral membrane protein bacteriorhodopsin (BR), which is a light-driven proton pump in Halobacterium salinarium. BR is embedded in lipids, forming patches in the cell membrane of the organism, which are the so called purple membranes (PMs). Measurements were carried out at room temperature on oriented PM-stacks hydrated at two different levels (low hydration, h = 0.03 g of D2O per g of PM; high hydration, h = 0.28 g of D2O per g of PM) using time-of-flight spectrometers. From the measured spectra, different diffusive components were identified and analyzed with respect to the influence of hydration. This study supports the idea that a decrease in hydration results in an appreciable decrease in internal molecular flexibility of the protein structure. Because it is known from studies on the function of BR that the pump activity is reduced if the hydration level of the protein is insufficient, we conclude that the observed diffusive motions are essential for the function of this protein. A detailed analysis and classification of the different kinds of diffusive motions, predominantly occurring in PMs under physiological conditions, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino acid sequence identity to rat neuronal NOS. Like mammalian NOSs, DNOS protein contains putative binding sites for calmodulin, FMN, FAD, and NADPH. DNOS activity is Ca2+/calmodulin dependent when expressed in cell culture. An alternative RNA splicing pattern also exists for dNOS, which is identical to that for vertebrate neuronal NOS. These structural and functional observations demonstrate remarkable conservation of NOS between vertebrates and invertebrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A doença de Chagas é uma parasitose extremamente negligenciada, cujo agente etiológico é o protozoário Trypanosoma cruzi. Atualmente, 21 países da América Latina são considerados regiões endêmicas, onde 75-90 milhões de pessoas estão expostas à infecção, 6-7 milhões estão infectadas e mais de 41 mil novos casos surgem por ano. Entretanto, apenas os fármacos nifurtimox e benznidazol estão disponíveis no mercado. Estes, além da baixa eficácia na fase crônica da parasitose, apresentam diversos efeitos adversos, sendo que no Brasil apenas o benznidazol é utilizado. Este fato mostra a importância de se ampliar o número de fármacos disponíveis e propor quimioterapia mais eficaz para o tratamento da doença de Chagas. Como forma de contribuir para essa busca, este trabalho objetiva a síntese de compostos híbridos bioisostéricos N-acilidrazônicos e sulfonilidrazônicos, contendo grupo liberador de óxido nítrico, com potencial de interação com cisteíno-proteases parasitárias, tais como a cruzaína. Nestes derivados, os grupos liberadores de óxido nítrico utilizados foram os grupos furoxano (contendo substituinte metílico e fenílico) e éster nitrato. Propôs-se a variação de anéis aromáticos substituídos e não-substituídos, com o intuito de avaliar a possível relação estrutura-atividade (REA) desses análogos. Até o momento, somente os compostos da série N-acilidrazônica tiveram avaliação biológica realizada. Os valores de IC50 dos compostos na forma amastigota do parasita variaram entre >100 a 2,88 µM, sendo este último valor comparável ao fármaco de referência. A atividade inibitória frente à cruzaína foi de 25,2 µM a 2,2 µM. Já a liberação de óxido nítrico foi avaliada pelo método indireto de detecção de nitrato e os valores variaram entre 52,0 µM e 4.232,0 µM. Estes são bem inferiores ao composto padrão, além de não se identificar correlação direta entre a atividade biológica e a liberação de NO. Na sequência, os dois compostos mais ativos (6 e 14) foram submetidos a estudos de permeabilidade e de citotoxicidade. O composto 6 foi considerado o de maior permeabilidade segundo o Sistema de Classificação Biofarmacêutica (SCB) e todos os compostos apresentaram a taxa de fluxo menor que 2, indicando a ausência de mecanismo de efluxo. Na avaliação do potencial citotóxico desses compostos em células humanas, o derivado 6 apresentou índice de seletividade superior ao do benznidazol. Em estudos de modelagem molecular usando análise exploratória de dados (HCA e PCA), propriedades estéricas/geométricas e eletrônicas foram consideradas as mais relevantes para a atividade biológica. Além disso, estudos de docking mostraram que a posição do grupo nitro no anel aromático é importante para a interação com a cruzaína. Ademais o composto 6 não provocou mudanças significativas no ciclo celular e na fragmentação de DNA em células humanas, mostrando-se como líder promissor para futuros estudos in vivo. Atividade tripanomicida, citotoxicidade, potencial de liberação de NO e estudos de permeabilidade dos 23 derivados sulfonilidrazônicos e ésteres nitrato estão sendo avaliados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Columnar cell lesions (CCLs) of the breast are a spectrum of lesions that have posed difficulties to pathologists for many years, prompting discussion concerning their biologic and clinical significance. We present a study of CCL in context with hyperplasia of usual type (HUT) and the more advanced lesions ductal carcinoma in situ (DCIS) and invasive ductal carcinoma. A total of 81 lesions from 18 patients were subjected to a comprehensive morphologic review based upon a modified version of Schnitt's classification system for CCL, immunophenotypic analysis (estrogen receptor [ER], progesterone receptor [PgR], Her2/neu, cytokeratin 5/6 [CK5/6], cytokeratin 14 [CK14], E-cadherin, p53) and for the first time, a whole genome molecular analysis by comparative genomic hybridization. Multiple CCLs from 3 patients were studied in particular detail, with topographic information and/or showing a morphologic spectrum of CCL within individual terminal duct lobular units. CCLs were ER an PgR positive, CK5/6 and CK14 negative, exhibit low numbers of genetic alterations and recurrent 16q loss, features that are similar to those of low grade in situ and invasive carcinoma. The molecular genetic profiles closely reflect the degree of proliferation and atypia in CCL, indicating some of these lesions represent both a morphologic and molecular continuum. In addition, overlapping chromosomal alterations between CCL and more advanced lesions within individual terminal duct lobular units suggest a commonality in molecular evolution. These data further support the hypothesis that CCLs are a nonobligate, intermediary step in the development of some forms of low grade in situ and invasive carcinoma. Copyright: © 2005 Lippincott Williams & Wilkins, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi 2, psi 2, phi 3 and psi 3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C-alpha-C-beta vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C-alpha-C-beta vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex determination represents a critical bifurcation in the road of embryonic development. It is based on a finely regulated network of gene activity, as well as protein-protein interactions and activation or silencing of signaling pathways. Despite the identification of a number of critical genes, many aspects of the molecular cascade that drives the differentiation of the embryonic gonad into either a testis or an ovary remain poorly understood. To identify new proteins involved in this cascade, we employed two-dimensional gel electrophoresis and mass spectrometry to compare the protein expression profiles of fetal mouse testes and ovaries. Three proteins, hnRPA1, TRA1, and HSC71, were found to be expressed in a male-specific manner and this expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization. Moreover, HSC71 was found to be hyperphosphorylated in male compared to female gonads, emphasizing the advantage of the proteomic approach in allowing the detection of posttranslational modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To determine the prevalent subtypes of feline immunodeficiency virus (FIV) present in the domestic cat population of Australia. Method Blood samples were collected from 41 FIV antibody positive cats from four cities across Australia. Following DNA extraction, polymerase chain reaction (PCR) was performed to amplify the variable V3-V5 region of the envelope (env) gene. Genotypes were assessed by direct sequencing of PCR products and comparison with previously reported FIV sequences. Phylogenetic analysis allowed classification of the Australian sequences into the appropriate subtype. Results Of the 41 FIV samples, 40 were found to cluster with previously reported subtype A isolates, whilst the remaining sample grouped within subtype B. Conclusions Subtype A was found to be the predominant FIV subtype present in Australia, although subtype B was also found. These results broaden our knowledge of the genetic diversity of FIV and the associated implications for preventative, diagnostic and therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., beta-amyloid (Abeta), tau, and alpha-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis. The molecular composition of a protein aggregate, however, is often complex and could be the direct or indirect consequence of a pathogenic gene mutation, be the result of cell degeneration, or reflect the acquisition of new substances by diffusion and molecular binding to existing proteins. This review examines the molecular composition of the major protein aggregates found in the neurodegenerative diseases including the Abeta and prion protein (PrP) plaques found in Alzheimer's disease (AD) and prion disease, respectively, and the cellular inclusions found in the tauopathies and synucleinopathies. The data suggest that the molecular constituents of a protein aggregate do not directly cause cell death but are largely the consequence of cell degeneration or are acquired during the disease process. These findings are discussed in relation to diagnosis and to studies of to disease pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and synthesis of safe and efficient nonviral vectors for gene delivery has attracted significant attention in recent years. Previous experiments have revealed that the charge density of a polycation (the carrier) plays a crucial role in complexation and the release of the gene from the complex in the cytosol. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with six cationic carrier systems of varying charge and surface topology. The simulations reveal detailed molecular-level pictures of the structures and dynamics of the RNA-polycation complexes. Estimates for the binding free energy indicate that electrostatic contributions are dominant followed by van der Waals interactions. The binding free energy between the 8(+)polymers and the RNA is found to be larger than that of the 4(+)polymers, in general agreement with previously published data. Because reliable binding free energies provide an effective index of the ability of the polycationic carrier to bind the nucleic acid and also carry implications for the process of gene release within the cytosol, these novel simulations have the potential to provide us with a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance the rational design of nonviral gene delivery systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the molecular mechanism of gene condensation is a key component to rationalizing gene delivery phenomena, including functional properties such as the stability of the gene-vector complex and the intracellular release of the gene. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with four cationic carrier systems of varying charge and surface topology at different charge ratios. At lower charge ratios, polymers bind quite effectively to siRNA, while at high charge ratios, the complexes are saturated and there are free polymers that are unable to associate with RNA. We also observed reduced fluctuations in RNA structures when complexed with multiple polymers in solution as compared to both free siRNA in water and the single polymer complexes. These novel simulations provide a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance progress toward rational design of nonviral gene delivery systems.