875 resultados para Sheet-metal work - Simulation methods
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.
Resumo:
This work is concerned with finite volume methods for flows at low mach numbers which are under buoyancy and heat sources. As a particular application, fires in car tunnels will be considered. To extend the scheme for compressible flow into the low Mach number regime, a preconditioning technique is used and a stability result on this is proven. The source terms for gravity and heat are incorporated using operator splitting and the resulting method is analyzed.
Resumo:
The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.
Resumo:
Speaker: Patrick McSweeney Organiser: Time: 15/10/2014 11:00-11:45 Location: B32/3077 Abstract Having started at Southampton in 2005 I have seen quite a few changes to the way courses are taught and studied. I will reflect on some of the interesting changes I have observed and suggest their causes. As a practical example I will talk about codestrom, a peer feedback tool for learning programming. We have found that this teaching method has improved the student experience and reduced the work load for the module team. Together we will discuss how this and other recent developments can enable other teaching innovations which benefit staff as well as students. Hopefully the new class of PhD students will be able to contribute from the point of view of having recently been undergraduate students here and else where.
Resumo:
Antioxidant enzymes are involved in important processes of cell detoxification during oxidative stress and have, therefore, been used as biomarkers in algae. Nevertheless, their limited use in fluvial biofilms may be due to the complexity of such communities. Here, a comparison between different extraction methods was performed to obtain a reliable method for catalase extraction from fluvial biofilms. Homogenization followed by glass bead disruption appeared to be the best compromise for catalase extraction. This method was then applied to a field study in a metal-polluted stream (Riou Mort, France). The most polluted sites were characterized by a catalase activity 4–6 times lower than in the low-polluted site. Results of the comparison process and its application are promising for the use of catalase activity as an early warning biomarker of toxicity using biofilms in the laboratory and in the field
Resumo:
La investigació que es presenta en aquesta tesi es centra en l'aplicació i millora de metodologies analítiques existents i el desenvolupament de nous procediments que poden ser utilitzats per a l'estudi dels efectes ambientals de la dispersió dels metalls entorn a les zones mineres abandonades. En primer lloc, es van aplicar diferents procediments d'extracció simple i seqüencial per a estudiar la mobilitat, perillositat i bio-disponibilitat dels metalls continguts en residus miners de característiques diferents. Per altra banda, per a estudiar les fonts potencials de Pb en la vegetació de les zones mineres d'estudi, una metodologia basada en la utilització de les relacions isotòpiques de Pb determinades mitjançant ICP-MS va ser avaluada. Finalment, tenint en compte l'elevat nombre de mostres analitzades per a avaluar l'impacte de les activitats mineres, es va considerar apropiat el desenvolupament de mètodes analítics d'elevada productivitat. En aquest sentit la implementació d'estratègies quantitatives així com l'aplicació de les millores instrumentals en els equips de XRF han estat avaluades per a aconseguir resultats analítics fiables en l'anàlisi de plantes. A més, alguns paràmetres de qualitat com la precisió, l'exactitud i els límits de detecció han estat curosament determinats en les diverses configuracions de espectròmetres de XRF utilitzats en el decurs d'aquest treball (EDXRF, WDXRF i EDPXRF) per a establir la capacitat de la tècnica de XRF com a tècnica alternativa a les clàssiques comunament aplicades en la determinació d'elements en mostres vegetals.
Resumo:
The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide A beta 16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and Molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations, The Solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics Simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures Were used to simulate Circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally.(in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
With the increasing pressure on crop production from the evolution of herbicide resistance, farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment their weed control. These include measures to increase the competitiveness of the crop canopy such as increased sowing rate and the use of more competitive cultivars. While there are data on the relative impact of these non-chemical weed control methods assessed in isolation, there is uncertainty about their combined contribution, which may be hindering their adoption. In this article, the INTERCOM simulation model of crop / weed competition was used to examine the combined impact of crop density, sowing date and cultivar choice on the outcomes of competition between wheat (Triticum aestivum) and Alopecurus myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-Western Europe and the primary target for IWM in the UK because it has evolved resistance to a range of herbicides. The model was parameterised for two cultivars with contrasting competitive ability, and simulations run across 10 years at different crop densities and two sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely work in a complementary fashion, allowing enhanced competitive ability against weeds when used in combination. However, the relative benefit of choosing a more competitive cultivar decreases at later sowing dates and higher crop densities. Modelling approaches could be further employed to examine the effectiveness of IWM, reducing the need for more expensive and cumbersome long-term in situ experimentation.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.
Resumo:
Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.
Resumo:
Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family house, while the unit under test has to act autonomously to cover the heat demand during a representative test cycle. Within the work package 2 of the MacSheep project these similar – but different – test methods were harmonized and improved. The work undertaken includes: • Harmonization of the physical boundaries of the unit under test. • Harmonization of the boundary conditions of climate and load. • Definition of an approach to reach identical space heat load in combination with an autonomous control of the space heat distribution by the unit under test. • Derivation and validation of new six day and a twelve day test profiles for direct extrapolation of test results. The new harmonized test method combines the advantages of the different methods that existed before the MacSheep project. The new method is a benchmark test, which means that the load for space heating and domestic hot water preparation will be identical for all tested systems, and that the result is representative for the performance of the system over a whole year. Thus, no modelling and simulation of the tested system is needed in order to obtain the benchmark results for a yearly cycle. The method is thus also applicable to products for which simulation models are not available yet. Some of the advantages of the new whole system test method and performance rating compared to the testing and energy rating of single components are: • Interaction between the different components of a heating system, e.g. storage, solar collector circuit, heat pump, control, etc. are included and evaluated in this test. • Dynamic effects are included and influence the result just as they influence the annual performance in the field. • Heat losses are influencing the results in a more realistic way, since they are evaluated under "real installed" and representative part-load conditions rather than under single component steady state conditions. The described method is also suited for the development process of new systems, where it replaces time-consuming and costly field testing with the advantage of a higher accuracy of the measured data (compared to the typically used measurement equipment in field tests) and identical, thus comparable boundary conditions. Thus, the method can be used for system optimization in the test bench under realistic operative conditions, i.e. under relevant operating environment in the lab. This report describes the physical boundaries of the tested systems, as well as the test procedures and the requirements for both the unit under test and the test facility. The new six day and twelve day test profiles are also described as are the validation results.
Resumo:
The work done in this thesis attempts to demonstrate the importance of using models that can predict and represent the mobility of our society. To answer the proposed challenges two models were examined, the first corresponds to macro simulation with the intention of finding a solution to the frequency of the bus company Horários do Funchal, responsible for transport in the city of Funchal, and some surrounding areas. Where based on a simplified model of the city it was possible to increase the frequency of journeys getting an overall reduction in costs. The second model concerns the micro simulation of Avenida do Mar, where currently is being built a new roundabout (Praça da Autonomia), which connects with this avenue. Therefore it was proposed to study the impact on local traffic, and the implementation of new traffic lights for this purpose. Four possible situations in which was seen the possibility of increasing the number of lanes on the roundabout or the insertion of a bus lane were created. The results showed that having a roundabout with three lanes running is the best option because the waiting queues are minimal, and at environmental level this model will project fewer pollutants. Thus, this thesis presents two possible methods of urban planning. Transport modelling is an area that is under constant development, the global goal is to encourage more and more the use of these models, and as such it is important to have more people to devote themselves to studying new ways of addressing current problems, so that we can have more accurate models and increasing their credibility.