928 resultados para Self-organization of States
Resumo:
The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.
Resumo:
The role for the novel treatment approach of sodium-glucose cotransporter-2 (SGLT-2) in type 2 diabetes is increasing. Structured self-monitoring of blood glucose (SMBG), based on a less intensive and a more intensive scheme, may contribute to an optimization of SGLT-2 inhibitor based treatment. The current expert recommendation suggests individualized approaches of SMBG, using simple and clinically applicable schemes. Potential benefits of SMBG in SGLT-2 inhibitor based treatment approaches are early assessment of treatment success or failure, timely modification of treatment, detection of hypoglycemic episodes, assessment of glucose excursions, and support of diabetes management and education. The length and frequency of SMBG should depend on the clinical setting and the quality of metabolic control.
Resumo:
The controlled arraying of DNA strands on adaptive polymeric platforms remains a challenge. Here, the noncovalent synthesis of DNA-grafted supramolecular polymers from short chimeric oligomers is presented. The oligomers are composed of an oligopyrenotide strand attached to the 5′-end of an oligodeoxynucleotide. The supramolecular polymerization of these oligomers in an aqueous medium leads to the formation of one-dimensional (1D) helical ribbon structures. Atomic force and transmission electron microscopy show rod-like polymers of several hundred nanometers in length. DNA-grafted polymers of the type described herein will serve as models for the development of structurally and functionally diverse supramolecular platforms with applications in materials science and diagnostics.
Resumo:
Coordination-driven gelation of a benzothiadiazole-fused tetrathiafulvalene (TTF) is demonstrated. This is the first work reporting highly stable metallogels based on a donor-acceptor conjugate with such a simple structure for the construction of new low-bandgap materials with various functional properties and novel nanostructures.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
DNA-grafted supramolecular polymers (SPs) allow the programmed organization of DNA in a highly regular, one-dimensional array. Oligonucleotides are arranged along the edges of pyrene-based helical polymers. Addition of complementary oligonucleotides triggers the assembly of individual nanoribbons resulting in the development of extended supramolecular networks. Network formation is enabled by cooperative coaxial stacking interactions of terminal GC base pairs. The process is accompanied by structural changes in the pyrene polymer core that can be followed spectroscopically. Network formation is reversible, and disassembly into individual ribbons is realized either via thermal denaturation or by addition of a DNA separator strand.
Resumo:
Sequential insertion of different dyes into the 1D channels of zeolite L (ZL) leads to supramolecular sandwich structures and allows the formation of sophisticated antenna composites for light harvesting, transport, and trapping. The synthesis and properties of dye molecules, host materials, composites, and composites embedded in polymer matrices, including two- and three-color antenna systems, are described. Perylene diimide (PDI) dyes are an important class of chromophores and are of great interest for the synthesis of artificial antenna systems. They are especially well suited to advancing our understanding of the structure–transport relationship in ZL because their core fits tightly through the 12-ring channel opening. The substituents at both ends of the PDIs can be varied to a large extent without influencing their electronic absorption and fluorescence spectra. The intercalation/insertion of 17 PDIs, 2 terrylenes, and 1 quaterrylene into ZL are compared and their interactions with the inner surface of the ZL nanochannels discussed. ZL crystals of about 500 nm in size have been used because they meet the criteria that must be respected for the preparation of antenna composites for light harvesting, transport, and trapping. The photostability of dyes is considerably improved by inserting them into the ZL channels because the guests are protected by being confined. Plugging the channel entrances, so that the guests cannot escape into the environment is a prerequisite for achieving long-term stability of composites embedded in an organic matrix. Successful methods to achieve this goal are described. Finally, the embedding of dye–ZL composites in polymer matrices, while maintaining optical transparency, is reported. These results facilitate the rational design of advanced dye–zeolite composite materials and provide powerful tools for further developing and understanding artificial antenna systems, which are among the most fascinating subjects of current photochemistry and photophysics.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.
Resumo:
The histones which pack new DNA during the S phase of animal cells are made from mRNAs that are cleaved at their 3' end but not polyadenylated. Some of the factors used in this reaction are unique to it while others are shared with the polyadenylation process that generates all other mRNAs. Recent work has begun to shed light on how the cell manages the assignment of these common components to the two 3' processing systems, and how it achieves their cell cycle-regulation and recruitment to the histone pre-mRNA. Moreover, recent and older findings reveal multiple connections between the nuclear organization of histone genes, their transcription and 3' end processing as well as the control of cell proliferation.
Resumo:
PURPOSE As survival rates of adolescent and young adult (AYA) cancer patients increase, a growing number of AYA cancer survivors need follow-up care. However, there is little research on their preferences for follow-up care. We aimed to (1) describe AYA cancer survivors' preferences for the organization and content of follow-up care, (2) describe their preferences for different models of follow-up, and (3) investigate clinical and sociodemographic characteristics associated with preferences for the different models. METHODS AYA cancer survivors (diagnosed with cancer at age 16-25 years; ≥5 years after diagnosis) were identified through the Cancer Registry Zurich and Zug. Survivors completed a questionnaire on follow-up attendance, preferences for organizational aspects of follow-up care (what is important during follow-up, what should be included during appointments, what specialists should be involved, location), models of follow-up (telephone/questionnaire, general practitioner (GP), pediatric oncologist, medical oncologist, multidisciplinary team), and sociodemographic characteristics. Information on tumor and treatment was available through the Cancer Registry Zurich and Zug. RESULTS Of 389 contacted survivors, 160 (41.1 %) participated and 92 (57.5 %) reported still attending follow-up. Medical aspects of follow-up care were more important than general aspects (p < 0.001). Among different organizational models, follow-up by a medical oncologist was rated higher than all other models (p = 0.002). Non-attenders of follow-up rated GP-led follow-up significantly higher than attenders (p = 0.001). CONCLUSION Swiss AYA cancer survivors valued medical content of follow-up and showed a preference for medical oncologist-led follow-up. Implementation of different models of follow-up care might improve accessibility and attendance among AYA cancer survivors.
Resumo:
Previous restriction analysis of cloned equine DNA and genomic DNA of equine peripheral blood mononuclear cells had indicated the existence of one c epsilon, one c alpha and up to six c gamma genes in the haploid equine genome. The c epsilon and c alpha genes have been aligned on a 30 kb DNA fragment in the order 5' c epsilon-c alpha 3'. Here we describe the alignment of the equine c mu and c gamma genes by deletion analysis of one IgM, four IgG and two equine light chain expressing heterohybridomas. This analysis establishes the existence of six c gamma genes per haploid genome. The genomic alignment of the cH-genes is 5' c mu/(/) c gamma 1/(/) c gamma 2/(/) c gamma 3/(/) c gamma 4/(/) c gamma 5/(/) c gamma 6/(/) c epsilon-c alpha 3', naming the c gamma genes according to their position relative to c mu. For three of the c gamma genes the corresponding IgG isotypes could be identified as IgGa for c gamma 1, IgG(T) for c gamma 3 and IgGb for c gamma 4.