987 resultados para Sedimenti della pianura Padana


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of phospholipase C-β1 (PLC-β1) and cyclin D3 is highly induced during skeletal myoblast differentiation. We have previously shown that PLC-β1 activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-β1 is a crucial regulator of mouse cyclin D3 gene. Here we report that PLC-β1 catalytic activity plays a role in the increase of cyclin D3 levels and in the induction of differentiation of C2C12 skeletal muscle cells. PLC-β1 mutational analysis revealed the importance of His331 and His378 for the catalytic activity. We show that following insulin administration, cyclin D3 mRNA levels are lower in cells overexpressing the PLC-β1 catalytically inactive form, as compared to wild type cells. We describe a novel signaling pathway elicited by PLC-β1 that modulates Activator Protein-1 (AP-1) activity. Indeed, gel mobility shift assays indicate that there is a c-jun binding site located in cyclin D3 promoter region specifically regulated by PLC-β1 and that c-jun binding activity is significantly increased by insulin stimulation and PLC-β1 overexpression. Moreover, mutation of c-jun/AP-1 binding site decreases the basal cyclin D3 promoter activity and eliminates its induction by insulin and PLC-β1 overexpression. Interestingly, we observed that the ectopic expression of the Inositol Polyphosphate Multikinase (IPMK) in C2C12 myoblasts enhances cyclin D3 gene expression and that the mutation of c-jun site in cyclin D3 promoter determines an impairment of IPMK-dependent promoter induction. These results indicate that PLC-β1 activates a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation through IPMK signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Akt (also called PKB) is a 63 kDa serine/threonine kinase involved in promotion of cell survival, proliferation a nd metabolic responses downstream the phosphoinositide-3-kinase (PI 3-kinase) signaling pathway. In resting cells, Akt is a predominantly cytosolic enzyme; however generation of PI 3-kinase lipid products recruits Akt to the plasma membrane, resulting in a conformational change which confers full enzymatic activity through the phosphorylation of the membrane-bound protein at two residues, Thr308, and Ser473. Activated Akt redistributes to cytoplasm and nucleus, where phosphorylation of specific substrates occurs. Both the presence and the activity of Akt in the nucleus have been described. An interesting mechanism that mediates nuclear translocation of Akt has been described in human mature T-cell leukemia: the product of TCL1 gene, Tcl1, interacts with the PH domain of phosphorylated Akt, thus driving Akt to the nucleus. In this context, Tcl1 may act as a direct transporter of Akt or may contribute to the formation of a complex that promotes the transport of active Akt to the nucleus, where it can phosphorylate nuclear substrates. A well described nuclear substrate if Foxo. IGF-1 triggers phosphorylation of Foxo by Akt inside the nucleus, where phospho-Foxo associates to 14.3.3 proteins that, in turn, promote its export to the cytoplasm where it is sequestered. Remarkably, Foxo phosphorylation by Akt has been shown to be a crucial event in Akt-dependent myogenesis. However, most Akt nuclear substrates have so far remained elusive, as well as nuclear Akt functions. This lack of information prompted us to undertake a search of substrates of Akt in the nucleus, by the combined use of 2D-separation/mass spectrometry and anti-Akt-phosphosubstrate antibody. This study presents evidence of A-type lamins as novel nuclear substrates of Akt. Lamins are type V intermediate filaments proteins found in the nucleus of higher eukaryotes where, together with lamin-binding proteins, they form the lamina at the nuclear envelope, providing mechanical stability for the nuclear membrane. By coimmunoprecipitation, it is demonstrated here that endogenous lamin A and Akt interact, and that A-type lamins are phosphorylated by Akt both in vitro and in vivo. Moreover, by phosphoaminoacid analysis and mutagenesis, it is further demonstrated that Akt phosphorylates lamin A at Ser404, and, more importantly, that while lamin A/C phosphorylation is stable throughout the cell cycle, phosphorylation of the precursor prelamin A becomes detectable as cells enter the G2 phase, picking at G2/M. This study also shows that lamin phosphorylation by Akt creates a binding site for 14.3.3 adaptors which, in turn, promote prelamin A degradation. While this mechanism is in agreement with a general role of Akt in the regulation of a subset of its substrates, opposite to what has been described, degradation is not mediated through a ubiquitination and proteasomal mechanism but through a lysosomal pathway, as indicated by the reverting action of the lysosomal inhibitor cloroquine. Phosphorylation is a key event in the mitotic breakdown of the nuclear lamina. However, the kinases and the precise sites of phosphorylation are scarcely known. Therefore, these results represent an important breakthrough in this very significant but understudied area. The phosphorylation of the precursor protein prelamin A and its subsequent degradation at G2/M, when both the nuclear envelop and the nuclear lamina disassemble, can be view as part of a mechanism to dispose off the precursor that is not needed in this precise context. The recently reported finding that patients affected by Emery-Dreifuss muscular dystrophy carry a mutation at Arg 401, in the Akt phosphorylation motif, open new perspective that warrant further investigation in this very important field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipase C (PLC) has been known to be a key effector protein in signal transduction pathway for cell proliferation and differentiation. Studies on signalling through the insulin/IGF-1 receptors in muscle differentiation have revealed that PLCγ1 is involved during this process and that both mRNA and protein levels were increased during myogenesis. Based on increasing signal transduction pathways that required both PLCγ1 and PKCε, we investigated its role in insulin stimulation of skeletal muscle differentiation. The precise effects of insulin on specific PKC isoforms are as yet unknown. Insulin stimulation produced a gradual increase in PKCε expression and activation of PKCε through skeletal muscle differentiation. By immunoprecipitation we have demonstrated that endogenous PLCγ1 and PKCε belong to the same immunocomplex that increase during through myogenic differentiation. Furthermore, the SH domain of PLCγ1 is involved in the protein complex and that its confine to the Golgi membrane. PLCγ1 has been involved in cyclin D3 up-regulation. By overexpression and silencing approach we have evidenced that PKCε modulate the espression of cyclin D3; the kinase dead form of PKCε doesn’t maintain the same ability. Using a reporter hGH vector we proved that PKCε acts at transcriptional level by affecting the -37 region of cyclin D3 promoter, as has been described previous for PLCγ1. In summary this data proved the involvement of PKCε in the regulation of cyclin D3 expression, together with PLCγ1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast carcinoma, one of the most frequent malignancies in women, is a complex disease in which a number of different factors combine to drive pathogenesis. The biopathological characterization of these tumors is essential to determine their aggressiveness and to find the most appropriate therapy. As in others neoplasms, the deregulation of signal transduction pathways is frequently responsible for conferring selective biological advantages to the tumor. Phosphoinositides play an essential role in diverse cellular functions, their metabolism is highly active, and is tightly controlled. Among the enzymes implicated in this pathway, phospholipase C beta 1 (PLCβ1) is one of the key regulators, both at the cytoplasmic and the nuclear level. The PLCβ1 gene maps onto the short arm of chromosome 20, a region that has been shown to be altered in several solid tumors, including breast cancer. In the present study a FISH approach was used to investigate the genetic alterations of the PLCβ1 gene in various classes of breast cancer which differ in their invasiveness and proliferation status, according to their mitotic index. The overall aim was to find out whether this enzyme could be a suitable prognostic marker for this neoplasm. Our results show that 83% of cases had aneusomies at the 20p12 level, and the most frequent alteration is a gain in this specific locus. Indeed, we found that this amplification is not related to the invasion status since there were no differences in amplified tumor frequencies between in situ and invasive breast cancer. On the contrary, the gain of PLCβ1 was significantly related to the mitotic index (p = 0.001). To verify if the change in genetic dosage influences the expression of PLCβ1 we performed Real Time PCR and Immunohystochemical analysis. Our results confirmed that amplified tumors have higher levels of PLCβ1 mRNA, which is the sum of the two splicing isoforms 1a and 1b. On the other hand, even if protein levels were higher in the majority of cases compared to the nontumoral specimens, there were no significant associations between gain and overexpression. Finally, the significant association between the amplification of PLCβ1 and others important clinicopathological parameters, such as grading and hormonal receptors status, confirmed a correlation of this enzyme with the aggressiveness of breast cancer. This suggests that PLCβ1 has the potential to be a prognostic marker in these tumors. However, further work needs to be carried out to validate these preliminary findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation deals with the problems and the opportunities of a semiotic approach to perception. Is perception, seen as the ability to detect and articulate an coherent picture of the surrounding environment, describable in semiotic terms? Is it possibile, for a discipline wary of any attempt to reduce semiotic meaning to a psychological and naturalized issue, to come to terms with the cognitive, automatic and genetically hard-wired specifics of our perceptive systems? In order to deal with perceptive signs, is it necessary to modify basic assumptions in semiotics, or can we simply extend the range of our conceptual instruments and definitions? And what if perception is a wholly different semiotic machinery, to be considered as sui generis, but nonetheless interesting for a general theory of semiotics? By exposing the major ideas put forward by the main thinkers in the semiotic field, Mattia de Bernardis gives a comprehensive picture of the theoretical situation, adding to the classical dichotomy between structuralist and interpretative semiotics another distinction, that between homogeneist and etherogeneist theories of perception. Homogeneist semioticians see perception as one of many semiotic means of sign production, totally similar to the other ones, while heterogeneist semioticians consider perceptive meaning as essentially different from normal semiotic meaning, so much so that it requires new methods and ideas to be analyzed. The main example of etherogeneist approach to perception in semiotic literature, Umberto Eco’s “primary semiosis” is then presented, critically examined and eventually rejected and the homogeneist stance is affirmed as the most promising path towards a semiotic theory of perception.