838 resultados para Seasonal Demand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results from an investigation into consumer preferences for locally produced foods. Using a choice experiment we estimate willingness to pay for foods of a designated origin together with certification for organic and free of genetically modified (GM)ingredients. Our results indicate that there is a preference for locally produced food that is GM free, organic, and produced in the traditional season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct observations from an array of current meter moorings across the Mozambique Channel in the south-west Indian Ocean are presented covering a period of more than 4 years. This allows an analysis of the volume transport through the channel, including the variability on interannual and seasonal time scales. The mean volume transport over the entire observational period is 16.7 Sv poleward. Seasonal variations have a magnitude of 4.1 Sv and can be explained from the variability in the wind field over the western part of the Indian Ocean. Interannual variability has a magnitude of 8.9 Sv and is large compared to the mean. This time scale of variability could be related to variability in the Indian Ocean Dipole (IOD), showing that it forms part of the variability in the ocean-climate system of the entire Indian Ocean. By modulating the strength of the South Equatorial Current, the weakening (strengthening) tropical gyre circulation during a period of positive (negative) IOD index leads to a weakened (strengthened) southward transport through the channel, with a time lag of about a year. The relatively strong interannual variability stresses the importance of long-term direct observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States (US) exports more than US$6 billion in agricultural commodities to the European Union (EU) each year, but one issue carries the potential to diminish this trade: use of biotechnology in food production. The EU has adopted more stringent policies towards biotechnology than the US. Understanding differences in European and American policies towards genetically modified (GM) foods requires a greater understanding of consumers' attitudes and preferences. This paper reports results from the first large-scale, cross-Atlantic study to analyse consumer demand for genetically modified food in a non-hypothetical market environment. We strongly reject the frequent if convenient assumption in trade theory that consumer preferences are identical across countries: the median level of compensation demanded by English and French consumers to consume a GM food is found to be more than twice that in any of the US locations. Results have important implications for trade theory, which typically focusses on differences in specialization, comparative advantage and factor endowments across countries, and for on-going trade disputes at the World Trade Organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a generalisation of the structural time series version of the Almost Ideal Demand System (AIDS) that allows for time-varying coefficients (TVC/AIDS) in the presence of cross-equation constraints. An empirical appraisal of the TVC/AIDS is made using a dynamic AIDS with trending intercept as the baseline model with a data set from the Italian Household Budget Survey (1986-2001). The assessment is based on four criteria: adherence to theoretical constraints, statistical diagnostics on residuals, forecasting performance and economic meaningfulness. No clear evidence is found for superior performance of the TVC/AIDS, apart from improved short-term forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capturing the pattern of structural change is a relevant task in applied demand analysis, as consumer preferences may vary significantly over time. Filtering and smoothing techniques have recently played an increasingly relevant role. A dynamic Almost Ideal Demand System with random walk parameters is estimated in order to detect modifications in consumer habits and preferences, as well as changes in the behavioural response to prices and income. Systemwise estimation, consistent with the underlying constraints from economic theory, is achieved through the EM algorithm. The proposed model is applied to UK aggregate consumption of alcohol and tobacco, using quarterly data from 1963 to 2003. Increased alcohol consumption is explained by a preference shift, addictive behaviour and a lower price elasticity. The dynamic and time-varying specification is consistent with the theoretical requirements imposed at each sample point. (c) 2005 Elsevier B.V. All rights reserved.