923 resultados para Search Engine Optimization Methods
Resumo:
The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Objective. The goal of this paper is to undertake a literature search collecting all dentin bond strength data obtained for six adhesives with four tests ( shear, microshear, tensile and microtensile) and to critically analyze the results with respect to average bond strength, coefficient of variation, mode of failure and product ranking. Method. A PubMed search was carried out for the years between 1998 and 2009 identifying publications on bond strength measurements of resin composite to dentin using four tests: shear, tensile, microshear and microtensile. The six adhesive resins were selected covering three step systems ( OptiBond FL, Scotch Bond Multi-Purpose Plus), two-step (Prime & Bond NT, Single Bond, Clear. l SE Bond) and one step (Adper Prompt L Pop). Results. Pooling results from 147 references showed an ongoing high scatter in the bond strength data regardless which adhesive and which bond test was used. Coefficients of variation remained high (20-50%) even with the microbond test. The reported modes of failure for all tests still included high number of cohesive failures. The ranking seemed to be dependant on the test used. Significance. The scatter in dentin bond strength data remains regardless which test is used confirming Finite Element Analysis predicting non-uniform stress distributions due to a number of geometrical, loading, material properties and specimens preparation variables. This reopens the question whether, an interfacial fracture mechanics approach to analyze the dentin - adhesive bond is not more appropriate for obtaining better agreement among dentin bond related papers. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The problem of designing spatially cohesive nature reserve systems that meet biodiversity objectives is formulated as a nonlinear integer programming problem. The multiobjective function minimises a combination of boundary length, area and failed representation of the biological attributes we are trying to conserve. The task is to reserve a subset of sites that best meet this objective. We use data on the distribution of habitats in the Northern Territory, Australia, to show how simulated annealing and a greedy heuristic algorithm can be used to generate good solutions to such large reserve design problems, and to compare the effectiveness of these methods.
Resumo:
Purpose: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. Methods: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; (V)over dot O-2peak = 64.5 +/- 5.2 mL.kg(-1).min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption ((V)over dotO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T-max) at their (V)over dotO(2peak) power output (P-max), as well as 3) a 40-kin time-trial (TT40). Subjects were matched and assigned to one of four training groups (G(1), N = 8, 8 X 60% T-max P-max, 1:2 work:recovery ratio; G(2), N = 9, 8 X 60% T-max at P-max, recovery at 65% HRmax; G(3), N = 10, 12 X 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1) G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. Results: All HIT groups improved TT40 performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to + 1.1 %; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their (V)over dot O-2peak significantly more than G(CON) (+ 1.0%; P < 0.05). Conclusion: The present study has shown that when HIT incorporates P-max as the interval intensity and 60% of T-max as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Protecção contra Radiações
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
In this work we solve Mathematical Programs with Complementarity Constraints using the hyperbolic smoothing strategy. Under this approach, the complementarity condition is relaxed through the use of the hyperbolic smoothing function, involving a positive parameter that can be decreased to zero. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.