1000 resultados para ScienceDirect
Resumo:
Biomaterials have been extensively developed and applied in medical devices. Among these materials, bioabsorbable polymers have attracted special attention for orthopedic applications where a transient existence of an implant can provide better results, when compared with permanent implants. Chitosan, a natural biopolymer, has generated enormous interest due to its various advantages such as biocompatibility, biodegradability and osteoconductive properties. In this paper, an assessment of the potential of a developed innovative production process of 3D solid and dense chitosan-based products for biomedical applications is performed and presented. Therefore, it starts with a brief explanation of the technology, highlighting its main features. Then, several potential applications and their markets were identified and assessed. After choosing a primary application and market, its potential as well as its uncertainties and risks were identified. A business model suggesting how to materialize the value from the application was sketched. After that, a brief description of the market as well as the identification of the main competitors and their distinctive features was made. The supply chain analysis and the go-to-market strategy were the following steps. In the end, a final recommendation based on the assessment of the information was prepared.
Resumo:
TiO2 nanorodswere prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electronmicroscopy images showthat the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimumphotoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods.
Resumo:
Long-term international assignments’ increase requires more attention being paid for the preparation of these foreign assignments, especially on the recruitment and selection process of expatriates. This article explores how the recruitment and selection process of expatriates is developed in Portuguese companies, examining the main criteria on recruitment and selection of expatriates’ decision to send international assignments. The paper is based on qualitative case studies of companies located in Portugal. The data were collected through semi-structured interviews of 42 expatriates and 18 organisational representatives as well from nine Portuguese companies. The findings show that the most important criteria are: (1) trust from managers, (2) years in service, (3) previous technical and language competences, (4) organisational knowledge and, (5) availability. Based on the findings, the article discusses in detail the main theoretical and managerial implications. Suggestions for further research are also presented.
Resumo:
The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.
Resumo:
Optically transparent cocatalyst film materials is very desirable for improved photoelectrochemical (PEC)oxygen evolution reaction (OER) over light harvesting photoelectrodes which require the exciting light to irradiate through the cocatalyst side, i.e., front-side illumination. In view of the reaction overpotential at electrode/electrolyte interface, the OER electrocatalysts have been extensively used as cocatalysts for PEC water oxidation on photoanode. In this work, the feasibility of a one-step fabrication of the transparent thin film catalyst for efficient electrochemical OER is investigated. The Ni-Fe bimetal oxide films, 200 nm in thickness, are used for study. Using a reactive magnetron co-sputtering technique, transparent(> 50% in wavelength range 500-2000 nm) Ni-Fe oxide films with high electrocatalytic activities were successfully prepared at room temperature. Upon optimization, the as-prepared bimetal oxide film with atomic ratio of Fe/Ni = 3:7 demonstrates the lowest overpotential for the OER in aqueous KOH solution, as low as 329 mV at current density of 2 mA cm 2, which is 135 and 108 mV lower than that of as-sputtered FeOx and NiOx thin films, respectively. It appears that this fabrication strategy is very promising to deposit optically transparent cocatalyst films on photoabsorbers for efficient PEC water splitting.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
Introduction: Increased fat mass is becoming more prevalent in women and its accumulation in the abdominal region can lead to numerous health risks such as diabetes mellitus. The clay body wrap using compounds such as green clay, green tea and magnesium sulfate, in addition to microcurrent, may reduce abdominal fat mass and minimize or prevent numerous health problems. Objective: This study aims at measuring the influence of the clay body wrap with microcurrent and aerobic exercise on abdominal fat. Methods: Nineteen female patients, randomized into intervention (n = 10) and control (n = 9) groups, were evaluated using ultrasound for visceral and subcutaneous abdominal fat, calipers and abdominal region perimeter for subcutaneous fat and bioimpedance for weight, fat mass percentage and muscular mass. During 10 sessions (5 weeks, twice a week) both groups performed aerobic exercise in a cycloergometer and a clay body wrap with microcurrent was applied to the intervention group. Results: When comparing both groups after 5 weeks of protocol, there was a significant decrease in the subcutane- ous fat around left anterior superior iliac spine in the intervention group (ρ = 0.026 for a confidence interval 95%). When comparing initial and final abdominal fat in the intervention group, measured by ultrasound (subcutaneous and visceral fat) and by skinfold (subcutaneous fat), we detected a significant abdominal fat reduction. Conclusion: This study demonstrated that the clay body wrap used with microcurrent and aerobic exercise can have a positive effect on central fat reduction.
Resumo:
Accumulation of microcystin-LR (MC-LR) in edible aquatic organisms, particularly in bivalves, is widely documented. In this study, the effects of food storage and processing conditions on the free MC-LR concentration in clams (Corbicula fluminea) fed MC-LR-producing Microcystisaeruginosa (1 × 105 cell/mL) for four days, and the bioaccessibility of MC-LR after in vitro proteolytic digestion were investigated. The concentration of free MC-LR in clams decreased sequentially over the time with unrefrigerated and refrigerated storage and increased with freezing storage. Overall, cooking for short periods of time resulted in a significantly higher concentration (P < 0.05) of free MC-LR in clams, specifically microwave (MW) radiation treatment for 0.5 (57.5%) and 1 min (59%) and boiling treatment for 5 (163.4%) and 15 min (213.4%). The bioaccessibility of MC-LR after proteolytic digestion was reduced to 83%, potentially because of MC-LR degradation by pancreatic enzymes. Our results suggest that risk assessment based on direct comparison between MC-LR concentrations determined in raw food products and the tolerable daily intake (TDI) value set for the MC-LR might not be representative of true human exposure.
Resumo:
Drug development represents a highly complex, inefficient and costly process. Over the past decade, the widespread use of nuclear imaging, owing to its functional and molecular nature, has proven to be a determinant in improving the efficiency in selecting the candidate drugs that should either be abandoned or moved forward into clinical trials. This helps not only with the development of safer and effective drugs but also with the shortening of time-to-market. The modern concept and future trends concerning molecular imaging will assumedly be hybrid or multimodality imaging, including combinations between high sensitivity and functional (molecular) modalities with high spatial resolution and morphological techniques.