891 resultados para SWARM-FOUNDING WASP
Resumo:
This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.
Resumo:
Este artigo propõe um Mecanismo de Negociação para Escalonamento Dinâmico com recurso a Swarm Intelligence (SI). No Mecanismo de Negociação, os agentes devem competir para obter um plano de escalamento global. SI é o termo geral para várias técnicas computacionais que retiram ideias e inspiração nos comportamentos sociais de insectos e outros animais. Este artigo propõe uma abordagem híbrida de diferentes conceitos da Inteligência Artificial (IA), como SI, Negociação em Sistemas Multi-Agente (SMA) e Técnicas de Aprendizagem Automática (AA). Este trabalho concentra a sua atenção na negociação, processo através do qual múltiplos agentes auto-interessados podem chegar a acordo através da troca competitiva de recursos.
Resumo:
In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented.
Resumo:
Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 6 de Junho de 2013, Universidade dos Açores.
Resumo:
Mestrado em Engenharia Química. Ramo optimização energética na indústria química.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação e Sistemas.
Resumo:
Neste trabalho serão apresentados e discutidos vários aspectos relacionados com células de combustível, com particular enfoque na modelação de células de combustível de membrana de permuta protónica. Este trabalho está dividido em vários capítulos. No Capítunlo 1 são apresentadas as motivações e os objectivos da tese. No Capítulo 2 serão apresentadas as células de combustível em geral, a sua origem, os diversos tipos, o que as diferencia das restantes tecnologias de geração de energia e as suas vantagens e desvantagens. No Capítulo 3 discute-se a modelação de células de combustível. Serão expostos e explicados os diferentes tipos de modelos, seguindo-se uma apresentação do modelo selecionado para estudo, com referência aos fundamentos teóricos exposição detalhada da fórmulação matemática e os parâmetros que caracterizam o modelo. É também apresentado a implementação do modelo em Matlab/Simulink. No Capítulo 4 será discutida e apresentada a abordagem utilizada para a identificação dos parâmetros do modelo da célula de combustível. Propõe-se e prova-se que uma abordagem baseada num algoritmo de optimização inteligente proporciona um método eficaz e preciso para a identificação dos parâmetros. Esta abordagem requer a existência de alguns dados experimentais que são também apresentados. O algoritmo utilizado designa-se por Optimização por Enxame de Partículas – Particle Swarm Optimization (PSO). São apresentados os seus fundamentos, características, implementação em Matlab/Simulink e a estratégia de optimização, isto é, a configuração do algoritmo, a definição da função objectivo e limites de variação dos parâmetros. São apresentados os resultados do processo de optimização, resultados adicionais de validação do modelo, uma análise de robustez do conjunto óptimo de parâmetros e uma análise de sensibilidade dos mesmos. O trabalho termina apresentando, no último capítulo, algumas conclusões, das quais se destacam: - O bom desempenho do algoritmo PSO para a identificação dos parâmetros do modelo da célula de combsutível; - Uma robustez interessante do algoritmo PSO, no sentido em que, para várias execuções do método resultam valores do parâmetros e da função objectivo com variabilidade bastante reduzidas; - Um bom modelo da célula de combustível, que quando caracterizado pelo conjunto óptimo de parâmetros, apresenta, sistematicamente, erros relativos médios inferiores a 2,5% para um conjunto alargado de condições de funcionamento.
Resumo:
Mestrado em Radioterapia
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia