938 resultados para SPONTANEOUS FISSION
Resumo:
The Arp2/3 complex is an essential component of the yeast actin cytoskeleton that localizes to cortical actin patches. We have isolated and characterized a temperature-sensitive mutant of Schizosaccharomyces pombe arp2 that displays a defect in cortical actin patch distribution. The arp2+ gene encodes an essential actin-related protein that colocalizes with actin at the cortical actin patch. Sucrose gradient analysis of the Arp2/3 complex in the arp2-1 mutant indicated that the Arp2p and Arc18p subunits are specifically lost from the complex at restrictive temperature. These results are consistent with immunolocalization studies of the mutant that show that Arp2-1p is diffusely localized in the cytoplasm at restrictive temperature. Interestingly, Arp3p remains localized to the cortical actin patch under the same restrictive conditions, leading to the hypothesis that loss of Arp2p from the actin patch affects patch motility but does not severely compromise its architecture. Analysis of the mutant Arp2 protein demonstrated defects in ATP and Arp3p binding, suggesting a possible model for disruption of the complex.
Resumo:
A mutation in the Schizosaccharomyces pombe sid4+ (septation initiation defective) gene was isolated in a screen for mutants defective in cytokinesis. We have cloned sid4+ and have found that sid4+ encodes a previously unknown 76.4-kDa protein that localizes to the spindle pole body (SPB) throughout the cell cycle. Sid4p is required for SPB localization of key regulators of septation initiation, including the GTPase Spg1p, the protein kinase Cdc7p, and the GTPase-activating protein Byr4p. An N-terminally truncated Sid4p mutant does not localize to SPBs and when overproduced acts as a dominant-negative mutant by titrating endogenous Sid4p and Spg1p from the SPB. Conversely, the Sid4p N-terminal 153 amino acids are sufficient for SPB localization. Biochemical studies demonstrate that Sid4p interacts with itself, and yeast two-hybrid analysis shows that its self-interaction domain lies within the C-terminal half of the protein. Our data indicate that Sid4p SPB localization is a prerequisite for the execution of the Spg1p signaling cascade.
Resumo:
A cytotoxic T lymphocyte (CTL) clone generated in vitro from the peripheral blood of a healthy HLA-A2-positive individual against a synthetic p53 protein-derived wild-type peptide (L9V) was shown to kill squamous carcinoma cell lines derived from two head and neck carcinomas, which expressed mutant p53 genes, in a L9V/HLA-A2 specific and restricted fashion. Thus, the normal tolerance against endogenously processed p53 protein-derived self-epitopes can be broken by peptide-specific in vitro priming. p53 protein-derived wild-type peptides might thus represent tumor associated target molecules for immunotherapeutical approaches.
Resumo:
We describe a method for identifying genes encoding proteins with stereospecific intracellular localizations in the fission yeast Schizosaccharomyces pombe. Yeast are transformed with a gene library in which S. pombe genomic sequences are fused to the gene encoding the Aequorea victoria green fluorescent protein (GFP), and intracellular localizations are subsequently identified by rapid fluorescence screening in vivo. In a model application of these methods to the fission yeast nucleus, we have identified several novel genes whose products are found in specific nuclear regions, including chromatin, the nucleolus, and the mitotic spindle, and sequence similarities between some of these genes and previously identified genes encoding nuclear proteins have validated the approach. These methods will be useful in identifying additional components of the S. pombe nucleus, and further extensions of this approach should also be applicable to a more comprehensive identification of the elements of intracellular architecture in fission yeast.
Resumo:
Nitric oxide (NO·) does not react significantly with thiol groups under physiological conditions, whereas a variety of endogenous NO donor molecules facilitate rapid transfer to thiol of nitrosonium ion (NO+, with one less electron than NO·). Here, nitrosonium donors are shown to decrease the efficacy of evoked neurotransmission while increasing the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). In contrast, pure NO· donors have little effect (displaying at most only a slight increase) on the amplitude of evoked EPSCs and frequency of spontaneous mEPSCs in our preparations. These findings may help explain heretofore paradoxical observations that the NO moiety can either increase, decrease, or have no net effect on synaptic activity in various preparations.
Resumo:
The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6–5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification.
Resumo:
European water frog hybrids Rana esculenta (Rana ridibunda × Rana lessonae) reproduce hemiclonally, transmitting only their ridibunda genome to gametes. We compared fitness-related larval life-history traits of natural R. esculenta from Poland with those of the two sympatric parental species and of newly generated F1 hybrids. Compared with either parental species, F1 hybrid offspring had higher survival, higher early growth rates, a more advanced developmental stage by day 49, and earlier metamorphosis, but similar mass at metamorphosis. R. esculenta from natural lineages had trait values intermediate between those of F1 offspring and of the two parental species. The data support earlier observations on natural R. esculenta that had faster larval growth, earlier metamorphosis, and higher resistance to hypoxic conditions compared with either parental species. Observing larval heterosis in F1 hybrids in survival, growth rate, and time to metamorphosis, however, at an even higher degree than in hybrids from natural lineages, demonstrates that heterosis is spontaneous and results from hybridity per se rather than from subsequent interclonal selection; in natural lineages the effects of hybridity and of clonal history are confounded. This is compelling evidence for spontaneous heterosis in hybrid clonals. Results on hemiclonal fish hybrids (Poeciliopsis) showed no spontaneous heterosis; thus, our frog data are not applicable to all hybrid clonals. Our data do show, however, that heterosis is an important potential source for the extensively observed ecological success of hybrid clonals. We suggest that heterosis and interclonal selection together shape fitness of natural R. esculenta lineages.
Resumo:
Members of the Src family of nonreceptor protein tyrosine kinases (PTKs) have been implicated in the regulation of cellular excitability and synaptic plasticity. We have investigated the role of these PTKs in in vitro models of epileptiform activity. Spontaneous epileptiform discharges were induced in vitro in the CA3 region of rat hippocampal slices by superfusion with the potassium channel blocker 4-aminopyridine in Mg2+-free medium. In hippocampal slices treated in this fashion, Src kinase activity was increased and the frequency of epileptiform discharges could be greatly reduced by inhibitor of the Src family of PTKs, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), but not by the inactive structural analog 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also reduced epileptiform activity induced by either 4-aminopyridine or Mg2+-free medium alone. These observations demonstrate a role for Src family PTKs in the pathophysiology of epilepsy and suggest potential therapeutic targets for antiepileptic therapy.
Resumo:
Malaria has long been among the most common diseases in the southeast Anatolia region of Turkey. In 1992, 18676 cases were diagnosed in Turkey, and Diyarbakir city had the highest incidence (4168 cases), followed by SanliUrfa city (3578 cases). Malaria was especially common during 1994 and 1995, with 84 345 and 82 094 cases being diagnosed in these years, respectively. Spontaneous rupture of malarial spleen is rare. We saw two cases during 1998, which are reported herein. Both patients were male, and were receiving chloroquine treatment for an acute attack of malaria. One of the patients had developed abdominal pain and palpitations, followed by fainting. The other patient had abdominal pain and fever. Explorative laparotomy revealed an enlarged spleen in both patients. Splenectomy was performed in both patients. We have identified 15 episodes of spontaneous rupture of the spleen in the English language literature published since 1961. Because of increased travel to endemic areas and resistance to antimalarial drugs, malaria is a major medical problem that is becoming increasingly important to surgeons worldwide. Malaria is a particularly important problem in the southeast Anatolia region of Turkey. Prophylactic precautions should be taken by tourists who travel to this region, especially during the summer.
Resumo:
Equilibrium unilamellar vesicles are stabilized by one of two distinct mechanisms depending on the value of the bending constant. Helfrich undulations ensure that the interbilayer potential is always repulsive when the bending constant, K, is of order kBT. When K ≫ kBT, unilamellar vesicles are stabilized by the spontaneous curvature that picks out a particular vesicle radius; other radii are disfavored energetically. We present measurements of the bilayer elastic constant and the spontaneous curvature, Ro, for three different systems of equilibrium vesicles by an analysis of the vesicle size distribution determined by cryo-transmission electron microscopy and small-angle neutron scattering. For cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate catanionic vesicles, K = .7 kBT, suggesting that the unilamellar vesicles are stabilized by Helfrich-undulation repulsions. However, for CTAB and sodium perfluorooctanoate (FC7) vesicles, K = 6 kBT, suggesting stabilization by the energetic costs of deviations from the spontaneous curvature. Adding electrolyte to the sodium perfluorooctanoate/CTAB vesicles leads to vesicles with two bilayers; the attractive interactions between the bilayers can overcome the cost of small deviations from the spontaneous curvature to form two-layer vesicles, but larger deviations to form three and more layer vesicles are prohibited. Vesicles with a discrete numbers of bilayers at equilibrium are possible only for bilayers with a large bending modulus coupled with a spontaneous curvature.
Resumo:
The Schizosaccharomyces pombe dhp1+ gene is an ortholog of the Saccharomyces cerevisiae RAT1 gene, which encodes a nuclear 5′→3′ exoribonuclease, and is essential for cell viability. To clarify the cellular functions of the nuclear 5′→3′ exoribonuclease, we isolated and characterized a temperature-sensitive mutant of dhp1 (dhp1-1 mutant). The dhp1-1 mutant showed nuclear accumulation of poly(A)+ RNA at the restrictive temperature, as was already reported for the rat1 mutant. Interestingly, the dhp1-1 mutant exhibited aberrant chromosome segregation at the restrictive temperature. The dhp1-1 cells frequently contained condensed chromosomes, most of whose sister chromatids failed to separate during mitosis despite normal mitotic spindle elongation. Finally, chromosomes were displaced or unequally segregated. As similar mitotic defects were also observed in Dhp1p-depleted cells, we concluded that dhp1+ is required for proper chromosome segregation as well as for poly(A)+ RNA metabolism in fission yeast. Furthermore, we isolated a multicopy suppressor of the dhp1-1 mutant, referred to as din1+. We found that the gene product of dhp1-1 was unstable at high temperatures, but that reduced levels of Dhp1-1p could be suppressed by overexpressing Din1p at the restrictive temperature. Thus, Din1p may physically interact with Dhp1p and stabilize Dhp1p and/or restore its activity.
Resumo:
Humans who have inherited the class I major histocompatibility allele HLA-A29 have a markedly increased relative risk of developing the eye disease termed birdshot chorioretinopathy. This disease affecting adults is characterized by symmetrically scattered, small, cream-colored spots in the fundus associated with retinal vasculopathy and inflammatory signs causing damage to the ocular structures, leading regularly to visual loss. To investigate the role of HLA-A29 in this disease, we introduced the HLA-A29 gene into mice. Aging HLA-A29 transgenic mice spontaneously developed retinopathy, showing a striking resemblance to the HLA-A29-associated chorioretinopathy. These results strongly suggest that HLA-A29 is involved in the pathogenesis of this disease. Elucidation of the role of HLA-A29 should be assisted by this transgenic model.
Resumo:
The uptake and expression of extracellular DNA has been established as a mechanism for horizontal transfer of genes between bacterial species. Such transfer can support acquisition of advantageous elements, including determinants that affect the interactions between infectious organisms and their hosts. Here we show that erythrocyte-stage Plasmodium falciparum malaria parasites spontaneously take up DNA from the host cell cytoplasm into their nuclei. We have exploited this finding to produce levels of reporter expression in P.falciparum that are substantially improved over those obtained by electroporation protocols currently used to transfect malaria parasites. Parasites were transformed to a drug-resistant state when placed into cell culture with erythrocytes containing a plasmid encoding the human dihydrofolate reductase sequence. The findings reported here suggest that the malaria genome may be continually exposed to exogenous DNA from residual nuclear material in host erythrocytes.
Resumo:
The RAD51 protein has been shown to participate in homologous recombination by promoting ATP-dependent homologous pairing and strand transfer reactions. In the present study, we have investigated the possible involvement of RAD51 in non-homologous recombination. We demonstrate that overexpression of CgRAD51 enhances the frequency of spontaneous non-homologous recombination in the hprt gene of Chinese hamster cells. However, the rate of non-homologous recombination induced by the topoisomerase inhibitors campothecin and etoposide was not altered by overexpression of RAD51. These results indicate that the RAD51 protein may perform a function in connection with spontaneous non-homologous recombination that is not essential to or not rate-limiting for non-homologous recombination induced by camptothecin or etoposide. We discuss the possibility that the role played by RAD51 in non-homologous recombination observed here may not be linked to non-homologous end-joining.