968 resultados para SPHERICAL ANTENNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the maximum ratio combining method for the combining of antenna-diversity signals in correlated Rician-fading channels is rigorously studied. The distribution function of the normalized signal-to-noise ratio (SNR) is expanded in terms of a power series and calculated numerically. This power series can easily take into account the signal correlations and antenna gains and can be applied to any number of receiving antennas. An application of the method to dual-antenna diversity systems produces useful distribution curves for the normalized SNR which can be used to find the diversity gain. It is revealed that signal correlation in Rician-fading channels helps to increase the diversity gain rather than to decrease it as in the Rayleigh fading channels. It is also shown that with a relative strong direct signal component, the diversity gain can be much higher than that without a direct signal component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-matched printed hemispherical helical antenna for potential use in global positioning system receivers is introduced. Unlike wired hemispherical helical antennas, its printed form renders it a much more stable and endurable structure and also easier for fabrication. The optimized antenna shows an impedance bandwidth of 6%, a 3-dB axial ratio bandwidth of 6%-7%, a return loss greater than 20 dB, and a gain of about 9 dB at the center frequency. The patterns of the antenna show a larger mainlobe in the upper half space with relatively small backlobes. Both theoretical and experimental results will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an array antenna with beam-steering capability in azimuth over a wide frequency band using real-valued weighting coefficients that can be realized in practice by amplifiers or attenuators. The described beamforming scheme relies on a 2D (instead of 1D) array structure in order to make sure that there are enough degrees of freedom to realize a given radiation pattern in both the angular and frequency domains. In the presented approach, weights are determined using an inverse discrete Fourier transform (IDFT) technique by neglecting the mutual coupling between array elements. Because of the presence of mutual coupling, the actual array produces a radiation pattern with increased side-lobe levels. In order to counter this effect, the design aims to realize the initial radiation pattern with a lower side-lobe level. This strategy is demonstrated in the design example of 4 X 4 element array. (C) 2005 Wiley Periodicals. Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a compact planar antenna featuring ultra wideband performance and simultaneous signal rejection in the 4-6 GHz band, assigned for IEEE802.11a and HIPERLAN/2, is presented. The design is demonstrated assuming RT6010LM substrate with a relative dielectric constant of 10.2 and thickness of 0.64 mm. The presented results show that the designed antenna of 27 mm * 20 mm dimensions has a bandwidth from 2.7 GHz to more than 10 GHz excluding the rejection band. The antenna features near omnidirectional characteristics and good radiation efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of an ultra-wideband planar tapered slot antenna for use in a circular cylindrical microwave imaging system is pre-sented. The antenna was designed assuming high dielectric substrate material Rogers RT6010LM to achieve its compact size. The developed antenna element (50 X 50 mm(2)) features a 10-dB return loss bandwidth from 2.75 GHz to more than 11 GHz. The gain of the antenna is between 3.5 and 9.4 dBi over the 3-10 GHz band. The experimental tests showed that the manufactured antenna element supports transmission of narrow pulses with negligible distortions, as required in the microwave imaging system. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method for the design of ultra-wideband antennas in planar format is presented. This method is demonstrated for a high-dielectric-constant substrate material, which allows for a considerable antenna size reduction. Simulations are performed using Ansoft's High-Frequency Structure Simulator (HFSS) for antennas assuming Du-Pont951 (epsilon(r) = 7.8) and RT6010LM (epsilon(r) = 10.2) substrates. For the 1-mm-thick DuPont951, the designed antenna with 22 X 28 nun dimensions features a 10-dB return-loss band width front 2.7 GHz to more than 15 GHz. For the 0.64-mm-thick RT6010LM a 20 X 26 nun antenna exhibits a 10-dB return loss bandwidth from 3.1 to 15 GHz. Both antennas feature nearly omnidirectional properties across the whole 10-dB return-loss bandwidth. The validity of the presented UWB antenna design strategy is confirmed by measurements performed on a prototype developed on RT6010LM substrate. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel design procedure for designing a compact UWB antipodal Vivaldi antenna is presented. The antenna operates over the UWB frequency, band from 3.1 to more than 10.6 GHz. Its measured far-field radiation is directive and its peak gain is 10.2 dBi in the specified band. The antenna pulse response shows negligible distortion, indicating that it can be useful in a precision ranging and imaging instrumentation. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When cultures of Brachyspira hyodysenteriae were grown under a wide range of in vitro conditions, at least 1% of the cells formed spherical bodies different to the normal helical form. This percentage increased considerably in aging cultures or following their incubation in caramelized media. Spherical body formation was initiated from a terminal localized swelling of the outer sheath followed by a retraction of the protoplasmic cylinder into the resulting swollen vesicle. As this occurred, the periplasmic flagella seemed to unwind from the protoplasmic cylinder. Once retracted, the protoplasmic cylinder was found to be wrapped in an organized manner around the inner surface of the membrane of the swollen vesicle. Although most were 2-3 mu m in diameter, some much larger spherical bodies (6-12 mu m diameter) were occasionally seen, with a corresponding increase in the visible number of peripheral protoplasmic cylinder cross-sections. Spherical bodies from older cultures did not contain protoplasmic cylinders arranged around the periphery, but instead were characterized by the presence of a centrally located, electron-dense body c. 0.5-0.8 mu m in diameter. Brachyspira hyodysenteriae spherical bodies differ in both their structural organization and probable method of formation from similar structures described in other spirochaete genera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On a global scale basalts from mid-ocean ridges are strikingly more homogeneous than basalts from intraplate volcanism. The observed geochemical heterogeneity argues strongly for the existence of distinct reservoirs in the Earth's mantle. It is an unresolved problem of Geodynamics as to how these findings can be reconciled with large-scale convection. We review observational constraints, and investigate stirring properties of numerical models of mantle convection. Conditions in the early Earth may have supported layered convection with rapid stirring in the upper layers. Material that has been altered near the surface is transported downwards by small-scale convection. Thereby a layer of homogeneous depleted material develops above pristine mantle. As the mantle cools over Earth history, the effects leading to layering become reduced and models show the large-scale convection favoured for the Earth today. Laterally averaged, the upper mantle below the lithosphere is least affected by material that has experienced near-surface differentiation. The geochemical signature obtained during the previous episode of small-scale convection may be preserved there for the longest time. Additionally, stirring is less effective in the high viscosity layer of the central lower mantle [1, 2], supporting the survival of medium-scale heterogeneities there. These models are the first, using 3-d spherical geometry and mostly Earth-like parameters, to address the suggested change of convective style. Although the models are still far from reproducing our planet, we find that proposal might be helpful towards reconciling geochemical and geophysical constraints.