885 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ear recognition, as a biometric, has several advantages. In particular, ears can be measured remotely and are also relatively static in size and structure for each individual. Unfortunately, at present, good recognition rates require controlled conditions. For commercial use, these systems need to be much more robust. In particular, ears have to be recognized from different angles ( poses), under different lighting conditions, and with different cameras. It must also be possible to distinguish ears from background clutter and identify them when partly occluded by hair, hats, or other objects. The purpose of this paper is to suggest how progress toward such robustness might be achieved through a technique that improves ear registration. The approach focuses on 2-D images, treating the ear as a planar surface that is registered to a gallery using a homography transform calculated from scale-invariant feature-transform feature matches. The feature matches reduce the gallery size and enable a precise ranking using a simple 2-D distance algorithm. Analysis on a range of data sets demonstrates the technique to be robust to background clutter, viewing angles up to +/- 13 degrees, and up to 18% occlusion. In addition, recognition remains accurate with masked ear images as small as 20 x 35 pixels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lors d'une intervention conversationnelle, le langage est supporté par une communication non-verbale qui joue un rôle central dans le comportement social humain en permettant de la rétroaction et en gérant la synchronisation, appuyant ainsi le contenu et la signification du discours. En effet, 55% du message est véhiculé par les expressions faciales, alors que seulement 7% est dû au message linguistique et 38% au paralangage. L'information concernant l'état émotionnel d'une personne est généralement inférée par les attributs faciaux. Cependant, on ne dispose pas vraiment d'instruments de mesure spécifiquement dédiés à ce type de comportements. En vision par ordinateur, on s'intéresse davantage au développement de systèmes d'analyse automatique des expressions faciales prototypiques pour les applications d'interaction homme-machine, d'analyse de vidéos de réunions, de sécurité, et même pour des applications cliniques. Dans la présente recherche, pour appréhender de tels indicateurs observables, nous essayons d'implanter un système capable de construire une source consistante et relativement exhaustive d'informations visuelles, lequel sera capable de distinguer sur un visage les traits et leurs déformations, permettant ainsi de reconnaître la présence ou absence d'une action faciale particulière. Une réflexion sur les techniques recensées nous a amené à explorer deux différentes approches. La première concerne l'aspect apparence dans lequel on se sert de l'orientation des gradients pour dégager une représentation dense des attributs faciaux. Hormis la représentation faciale, la principale difficulté d'un système, qui se veut être général, est la mise en œuvre d'un modèle générique indépendamment de l'identité de la personne, de la géométrie et de la taille des visages. La démarche qu'on propose repose sur l'élaboration d'un référentiel prototypique à partir d'un recalage par SIFT-flow dont on démontre, dans cette thèse, la supériorité par rapport à un alignement conventionnel utilisant la position des yeux. Dans une deuxième approche, on fait appel à un modèle géométrique à travers lequel les primitives faciales sont représentées par un filtrage de Gabor. Motivé par le fait que les expressions faciales sont non seulement ambigües et incohérentes d'une personne à une autre mais aussi dépendantes du contexte lui-même, à travers cette approche, on présente un système personnalisé de reconnaissance d'expressions faciales, dont la performance globale dépend directement de la performance du suivi d'un ensemble de points caractéristiques du visage. Ce suivi est effectué par une forme modifiée d'une technique d'estimation de disparité faisant intervenir la phase de Gabor. Dans cette thèse, on propose une redéfinition de la mesure de confiance et introduisons une procédure itérative et conditionnelle d'estimation du déplacement qui offrent un suivi plus robuste que les méthodes originales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freehand sketching is both a natural and crucial part of design, yet is unsupported by current design automation software. We are working to combine the flexibility and ease of use of paper and pencil with the processing power of a computer to produce a design environment that feels as natural as paper, yet is considerably smarter. One of the most basic steps in accomplishing this is converting the original digitized pen strokes in the sketch into the intended geometric objects using feature point detection and approximation. We demonstrate how multiple sources of information can be combined for feature detection in strokes and apply this technique using two approaches to signal processing, one using simple average based thresholding and a second using scale space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artifacts made by humans, such as items of furniture and houses, exhibit an enormous amount of variability in shape. In this paper, we concentrate on models of the shapes of objects that are made up of fixed collections of sub-parts whose dimensions and spatial arrangement exhibit variation. Our goals are: to learn these models from data and to use them for recognition. Our emphasis is on learning and recognition from three-dimensional data, to test the basic shape-modeling methodology. In this paper we also demonstrate how to use models learned in three dimensions for recognition of two-dimensional sketches of objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La visió és probablement el nostre sentit més dominant a partir del qual derivem la majoria d'informació del món que ens envolta. A través de la visió podem percebre com són les coses, on són i com es mouen. En les imatges que percebem amb el nostre sistema de visió podem extreure'n característiques com el color, la textura i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins i tot quan s'observen sota unes condicions totalment diferents. Per exemple, som capaços de distingir un mateix objecte si l'observem des de diferents punts de vista, distància, condicions d'il·luminació, etc. La Visió per Computador intenta emular el sistema de visió humà mitjançant un sistema de captura d'imatges, un ordinador, i un conjunt de programes. L'objectiu desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge d'una manera similar com ho realitzaria una persona. Aquesta tesi es centra en l'anàlisi de la textura per tal de realitzar el reconeixement de superfícies. La motivació principal és resoldre el problema de la classificació de superfícies texturades quan han estat capturades sota diferents condicions, com ara distància de la càmera o direcció de la il·luminació. D'aquesta forma s'aconsegueix reduir els errors de classificació provocats per aquests canvis en les condicions de captura. En aquest treball es presenta detalladament un sistema de reconeixement de textures que ens permet classificar imatges de diferents superfícies capturades en diferents condicions. El sistema proposat es basa en un model 3D de la superfície (que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada posteriorment per un mètode de predicció de textures amb l'objectiu de generar noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges virtuals que es generen seran la base del nostre sistema de reconeixement, ja que seran utilitzades com a models de referència per al nostre classificador de textures. El sistema de reconeixement proposat combina les Matrius de Co-ocurrència per a l'extracció de característiques de textura, amb la utilització del Classificador del veí més proper. Aquest classificador ens permet al mateix temps aproximar la direcció d'il·luminació present en les imatges que s'utilitzen per testejar el sistema de reconeixement. És a dir, serem capaços de predir l'angle d'il·luminació sota el qual han estat capturades les imatges de test. Els resultats obtinguts en els diferents experiments que s'han realitzat demostren la viabilitat del sistema de predicció de textures, així com del sistema de reconeixement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban surveillance footage can be of poor quality, partly due to the low quality of the camera and partly due to harsh lighting and heavily reflective scenes. For some computer surveillance tasks very simple change detection is adequate, but sometimes a more detailed change detection mask is desirable, eg, for accurately tracking identity when faced with multiple interacting individuals and in pose-based behaviour recognition. We present a novel technique for enhancing a low-quality change detection into a better segmentation using an image combing estimator in an MRF based model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.