967 resultados para SCLERODERMA FIBROBLASTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4(+) and CD8(+) T cell homeostasis by providing a limited reservoir of survival factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5) trypomastigotes of the F strain (a myotropic strain) of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ewing's sarcoma is a member of Ewing's family tumors (EFTs) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The EWS-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to EFT development. However, EWS-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are permissive for its putative oncogenic properties have not been discovered, hampering basic understanding of EFT biology. Here, we show that EWS-FLI-1 alone can transform primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of EFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWS-FLI-1 target genes. These observations provide the first identification of candidate primary cells from which EFTs originate and suggest that EWS-FLI-1 expression may constitute the initiating event in EFT pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY : Skin wound repair is a complex and highly coordinated process, where a variety of cell types unite to regenerate the damaged tissue. Several works have elucidated cellular and molecular mechanisms, in which mesenchymal-epidermal interactions play an essential role for the regulation of skin homeostasis and repair. Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily. Three related isotypes (PPARα, PPARß/δ and PPARγ) have been found, which exhibit distinct tissue distribution and specific physiological functions. PPARß/δ was identified as a crucial player of skin homeostasis. In the mouse skin, PPARß/δ has been described to control proliferation-differentiation state, adhesion and migration, and survival of the keratinocytes during healing. PPARß/δ has been implicated as well in the development of the hair follicles, in which mesenchymal-secreted hepatocyte growth factor (HGF) is involved. These data suggest that the biological activity of PPARß/δ is modulated by mesenchymal-epidermal interactions and that, in turn, PPARß/δ also modulates some of these signals. The aim of the present work was to elucidate the nature of the signals exchanged between the epidermis and dermis compartments, and more particularly those which are under the control of PPARß/δ. In the first part of the study, we showed that PPARß/8 in dermal fibroblasts down-regulates the mitotic activity of keratinocytes by inhibiting the IL-1 signalling pathway via the production of secreted IL-1 receptor antagonist (sIL-1Ra), a natural antagonist of this signalling. The regulation of IL-1 signalling by PPARß/δ is required for anon-pathological skin wound repair. These findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated by the regulation of IL-1 signalling via dermal PPARß/δ fibroblasts. Proteolysis of the extracellular matrix (ECM) is a key process involved in wound repair and modifications in its activity are often associated with an alteration óf the wound closure. This process implies specific proteinases, as matrix metalloproteinases (MMPs), which are finely modulated by IL-1 signalling. In line with the first results, the second part of the work showed that MMP8 and MMP13, which are two important collagenases involved in mouse skin wound repair, are regulated by PPARß/δ. Their expression is indirectly down-regulated by dermal PPARß/δ, via the production of sIL-1Ra, resulting in the inhibition of IL-1 signalling, known to regulate the expression of numerous MMPs. We suggest that, in absence of PPARß/δ, the positive regulation of these two collagenases could participate to the delay of skin wound healing, which has been observed in mice deleted for PPARßlS. The potential therapeutic role of PPARß/b could be as well extending to inflammatory and hyperproliferative skin diseases involving IL-1 signalling, such as psoriasis or skin cancers. Quite interestingly, MMP1 (analogue of mouse MMP13) plays an essential role in human photoaging, suggesting that PPARß/δ could as well be an attractive target for photoprotection. RESUME : La cicatrisation est un processus complexe et extrêmement organisé, impliquant un grand nombre de cellules qui s'unissent pour régénérer le tissu endommagé. De nombreux travaux nous ont éclairés sur les mécanismes cellulaires et moléculaires, dans lesquels les interactions épidermo-mésenchymateuses détiennent un rôle capital à la fois dans la régulation de l'homéostasie et dans la réparation de la peau. PPAR (Peroxisome proliferatar-activated receptor), qui appartient à la superfamille des récepteurs nucléaires, se définit comme un facteur de transcription activé par des ligands très spécifiques. Trois isotypes (PPARa, PPARß/δ et PPARy) ont été décrits et sont caractérisés par une distribution tissulaire et des fonctions physiologiques clairement définies. PPARß/δ a été identifié comme étant un important acteur dans l'homéostasie de la peau. Chez la souris, il a été décrit comme contrôlant l'état de prolifération et de différenciation, le processus d'adhésion et de migration, ainsi que la survie des kératinocytes au cours de la cicatrisation. PPARßIS a également été défini comme contrôlant le développement des follicules pileux, impliquant la sécrétion par le mésenchyme du facteur de croissance HGF. Ces données suggèrent que l'activité biologique de PPARß/δ est modulée par des interactions épidermo-mésenchymateuses, et qu'en retour, il possède la capacité de moduler certains de ces signaux. L`objectif de ce travail a été d'élucider la nature des signaux échangés entre les compartiments épidermique et dermique, et plus particulièrement ceux qui sont sous le contrôle de PPARß/δ. Dans la première partie de l'étude, nous avons montré que les fibroblastes exprimant PPARß/δ réduisent l'activité mitotique des kératinocytes en inhibant la voie de signalisation IL-1, via la production de sIL-1Ra (secreted IL-1 receptor antagonist), défini comme un antagoniste naturel de cette voie de signalisation. La régulation de cette dernière par PPARß/δ est donc nécessaire pour une cicatrisation de type non pathologique. Ces résultats offrent donc une nouvelle preuve du contrôle de l'homéostasie et de l'état de prolifération/différenciation des kératinocytes par les fibroblastes exprimant PPARß/δ, en régulant la voie de signalisation IL-1. Le mécanisme de dégradation de la matrice extracellulaire (MEC) est une étape essentielle lors du processus de cicatrisation. Ainsi des modifications de cette activité protéolytïque sont souvent associées à une altération de la fermeture de la plaie. Ce processus implique des protéinases, comme les MMPs, qui sont finement modulés par la voie de signalisation IL-1. En accord avec les premiers résultats, la seconde partie des nos travaux a montré que les collagénases MMP8 et MMP13, connues pour être d'importantes molécules impliquées lors de la réparation tissulaire chez la souris, sont modulées par l'activité de PPARß/δ. Leurs expressions sont indirectement régulées par PPARß/δ, via la production. de sIL-1 Ra, entraînant ainsi l'inhibition de la voie de signalisation IL-1, décrite pour réguler l'expression de nombreuses MMPs, Nous suggérons donc qu'en absence de PPARß/δ, la régulation de ces deux collagénases pourrait être impliquée dans le retard de cicatrisation, observé chez les souris déficientes pour PPARß/δ. L'activité biologique de PPARß/δ pourrait être ainsi étendue à des maladies hyperproliferatives et inflammatoires de la peau, impliquant la voie de signalisation IL-1, comme le psoriasis ou certains cancers de la peau, et ce à des fins thérapeutiques. Il est aussi intéressant de relever que chez l'homme, MMP1 (présenté comme l'analogue de MMP13 de la souris} joue un rôle primordial dans le photo-vieillissement, nous suggérons donc que PPARß/δ pourrait ainsi être une cible attrayante concernant la photoprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase of cancer specificity and efficacy of anti-tumoral agents are prime strategies to overcome the deleterious side effects associated with anti-cancer treatments. We described earlier a cell-permeable protease-resistant peptide derived from the p120 RasGAP protein, called TAT-RasGAP317-326, as being an efficient tumor-specific sensitizer to apoptosis induced by genotoxins in vitro and in vivo. Bcl-2 family members regulate the intrinsic apoptotic response and as such could be targeted by TAT-RasGAP317-326. Our results indicate that the RasGAP-derived peptide increases cisplatin-induced Bax activation. We found no evidence, using in particular knock-out cells, of an involvement of other Bcl-2 family proteins in the tumor-specific sensitization activity of TAT-RasGAP317-326. The absence of Bax and Bak in mouse embryonic fibroblasts rendered them resistant to cisplatin-induced apoptosis and consequently to the sensitizing action of the RasGAP-derived peptide. Surprisingly, in the HCT116 colon carcinoma cell line, the absence of Bax and Bak did not prevent cisplatin-induced apoptosis and the ability of TAT-RasGAP317-326 to augment this response. Our study also revealed that p53, while required for an efficient genotoxin-induced apoptotic response, is dispensable for the ability of the RasGAP-derived peptide to improve the capacity of genotoxins to decrease long-term survival of cancer cells. Hence, even though genotoxin-induced Bax activity can be increased by TAT-RasGAP317-326, the sensitizing activity of the RasGAP-derived peptide can operate in the absence of a functional mitochondrial intrinsic death pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF). Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myhre syndrome (MIM 139210) is a developmental disorder characterized by short stature, short hands and feet, facial dysmorphism, muscular hypertrophy, deafness and cognitive delay. Using exome sequencing of individuals with Myhre syndrome, we identified SMAD4 as a candidate gene that contributes to this syndrome on the basis of its pivotal role in the bone morphogenetic pathway (BMP) and transforming growth factor (TGF)-β signaling. We identified three distinct heterozygous missense SMAD4 mutations affecting the codon for Ile500 in 11 individuals with Myhre syndrome. All three mutations are located in the region of SMAD4 encoding the Mad homology 2 (MH2) domain near the site of monoubiquitination at Lys519, and we found a defect in SMAD4 ubiquitination in fibroblasts from affected individuals. We also observed decreased expression of downstream TGF-β target genes, supporting the idea of impaired TGF-β-mediated transcriptional control in individuals with Myhre syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpha 1B-adrenergic receptor (alpha 1BAR) and its truncated mutant T368 lacking the last 147 amino acids were stably expressed in Rat1 fibroblasts. The wild type alpha 1BAR was rapidly phosphorylated upon exposure to the agonist epinephrine as well as to phorbol ester as assessed by immunoprecipitation of the receptor with antiserum raised against its amino-terminal portion. Exposure of cells expressing the wild type alpha 1BAR to epinephrine resulted also in rapid homologous desensitization of receptor-mediated response on polyphosphoinositide hydrolysis. On the other hand, truncation of the serine- and threonine-rich carboxyl portion of the alpha 1BAR abolished agonist-induced phosphorylation and greatly impaired homologous desensitization of the receptor. The truncated receptor T368 could undergo agonist-induced decrease of cell surface receptors but to a lesser extent, as compared with the wild type alpha 1BAR. These results demonstrate that the carboxyl portion of the alpha 1BAR plays a crucial role in the regulation of receptor function. They also suggest a strong relationship between agonist-induced phosphorylation and desensitization of the alpha 1BAR, which were both insensitive to the inhibitor of protein kinase C RO-318220. Our findings support the emerging hypothesis that the biochemical mechanisms involved in rapid agonist-dependent regulation of G protein-coupled receptors, which activate polyphosphoinositide hydrolysis, do not primarily involve protein kinase C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myofibroblasts, cells with intermediate features between smooth muscle cells and fibroblasts, have been described as an important cellular component of schistosomal portal fibrosis. The origin, distribution and fate of myofibroblasts were investigated by means of light, fluorescent, immunoenzymatic and ultrastructural techniques in wedge liver biopsies from 68 patients with the hepatosplenic form of schistosomiasis. Results demonstrated that the presence of myofibroblasts varied considerably from case to case and was always related to smooth muscle cell dispersion, which occurred around medium-sized damaged portal vein branches. By sequential observation of several cases, it was evident that myofibroblasts derived by differentiation of vascular smooth muscle and gradually tended to disappear, some of them further differentiating into fibroblasts. Thus, in schistosomal pipestem fibrosis myofibroblasts appear as transient cells, focally accumulated around damaged portal vein branches, and do not seem to have by themselves any important participation in the pathogenesis of hepatosplenic schistosomiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than a decade ago, 'plasticity' suddenly became a 'fashionable' topic with overemphasized implications for regenerative medicine. The concept of 'plasticity' is supported by old transplantation work, at least for embryonic cells, and metaplasia is a classic example of plasticity observed in patients. Nevertheless, the publication of a series of papers showing rare conversion of a given cell type into another unrelated cell raised the possibility of using any unaffected tissue to create at will new cells to replace a different failing tissue or organ. This resulted in disingenuous interpretations and a reason not to fund anymore research on embryonic stem cells (ESc). Moreover, many papers on plasticity were difficult to reproduce and thus questioned; raising issues about plasticity as a technical artefact or a consequence of rare spontaneous cells fusion. More recently, reprogramming adult differentiated cells to a pluripotent state (iPS) became possible, and later, one type of differentiated cell could be directly reprogrammed into another (e.g. fibroblasts into neurons) without reverting to pluripotency. Although the latter results from different and more robust experimental protocols, these phenomena also exemplify 'plasticity'. In this review, we want to place 'plasticity' in a historical perspective still taking into account ethical and political implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to evaluate the presence of specific IgG antibodies to Borrelia burgdorferi in patients with clinical manifestations associated with Lyme borreliosis in Cali, Colombia, 20 serum samples from patients with dermatologic signs, one cerebrospinal fluid (CSF) sample from a patient with chronic neurologic and arthritic manifestations, and twelve serum samples from individuals without clinical signs associated with Lyme borreliosis were analyzed by IgG Western blot. The results were interpreted following the recommendations of the Centers for Diseases Control and Prevention (CDC) for IgG Western blots. Four samples fulfilled the CDC criteria: two serum specimens from patients with morphea (localized scleroderma), the CSF from the patient with neurologic and arthritic manifestations, and one of the controls. Interpretation of positive serology for Lyme disease in non-endemic countries must be cautious. However these results suggest that the putative "Lyme-like" disease may correlate with positivity on Western blots, thus raising the possibility that a spirochete genospecies distinct from B. burgdorferi sensu stricto, or a Borrelia species other than B. burgdorferi sensu lato is the causative agent. Future work will focus on a survey of the local tick and rodent population for evidence of spirochete species that could be incriminated as the etiologic agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal and dermal cells can be multiplied in vitro using different techniques. Under particular conditions, the structure and the function of the original tissues are partly recreated. Autologous epidermal substitutes for wound coverage in deep burns are prepared in less than three weeks. Bilayered skin equivalents containing a dermal component are obtained by growing epidermal cells on a reconstructed dermal substitute or by juxtaposing stratified cultures of keratinocytes and fibroblasts. New technologies are required to optimise the nutrition of three-dimensional cultures of skin cells, which should lead to further progress in the area of skin reconstruction.