963 resultados para S. Warwick
Resumo:
One of the major aims of BCI research is devoted to achieving faster and more efficient control of external devices. The identification of individual tap events in a motor imagery BCI is therefore a desirable goal. EEG is recorded from subjects performing and imagining finger taps with their left and right hands. A Differential Evolution based feature selection wrapper is used in order to identify optimal features in the spatial and frequency domains for tap identification. Channel-frequency band combinations are found which allow differentiation of tap vs. no-tap control conditions for executed and imagined taps. Left vs. right hand taps may also be differentiated with features found in this manner. A sliding time window is then used to accurately identify individual taps in the executed tap and imagined tap conditions. Highly statistically significant classification accuracies are achieved with time windows of 0.5 s and more allowing taps to be identified on a single trial basis.
Resumo:
The possibility of using a radial basis function neural network (RBFNN) to accurately recognise and predict the onset of Parkinson’s disease tremors in human subjects is discussed in this paper. The data for training the RBFNN are obtained by means of deep brain electrodes implanted in a Parkinson disease patient’s brain. The effectiveness of a RBFNN is initially demonstrated by a real case study.
Resumo:
Cybernetics is a broad subject, encompassing many aspects of electrical, electronic, and computer engineering, which suffers from a lack of understanding on the part of potential applicants and teachers when recruiting students. However, once the engineering values, fascinating science, and pathways to rewarding, diverse careers are communicated, appropriate students can be very interested in enrolling. At the University of Reading, Reading, U.K., a key route for outreach to prospective students has been achieved through the use of robots in interactive talks at schools, competitions (often funded by Public Understanding of Science projects), a collectable fortnightly magazine, exhibitions in museums, open days at the University, and appearances in the media. This paper identifies the interactive engagement, anthropomorphic acceptability, and inspirational nature of robots as being key to their successful use in outreach activities. The statistical results presented show that the continued popularity of degrees at Reading in cybernetics, electronic engineering, and robotics over the last 20 years is in part due to the outreach activities to schools and the general public.
Resumo:
Based on insufficient evidence, and inadequate research, Floridi and his students report inaccuracies and draw false conclusions in their Minds and Machines evaluation, which this paper aims to clarify. Acting as invited judges, Floridi et al. participated in nine, of the ninety-six, Turing tests staged in the finals of the 18th Loebner Prize for Artificial Intelligence in October 2008. From the transcripts it appears that they used power over solidarity as an interrogation technique. As a result, they were fooled on several occasions into believing that a machine was a human and that a human was a machine. Worse still, they did not realise their mistake. This resulted in a combined correct identification rate of less than 56%. In their paper they assumed that they had made correct identifications when they in fact had been incorrect.
Resumo:
Purpose – The purpose of this paper is to consider Turing's two tests for machine intelligence: the parallel-paired, three-participants game presented in his 1950 paper, and the “jury-service” one-to-one measure described two years later in a radio broadcast. Both versions were instantiated in practical Turing tests during the 18th Loebner Prize for artificial intelligence hosted at the University of Reading, UK, in October 2008. This involved jury-service tests in the preliminary phase and parallel-paired in the final phase. Design/methodology/approach – Almost 100 test results from the final have been evaluated and this paper reports some intriguing nuances which arose as a result of the unique contest. Findings – In the 2008 competition, Turing's 30 per cent pass rate is not achieved by any machine in the parallel-paired tests but Turing's modified prediction: “at least in a hundred years time” is remembered. Originality/value – The paper presents actual responses from “modern Elizas to human interrogators during contest dialogues that show considerable improvement in artificial conversational entities (ACE). Unlike their ancestor – Weizenbaum's natural language understanding system – ACE are now able to recall, share information and disclose personal interests.
Resumo:
This paper presents an analysis of three major contests for machine intelligence. We conclude that a new era for Turing’s test requires a fillip in the guise of a committed sponsor, not unlike DARPA, funders of the successful 2007 Urban Challenge.
Resumo:
Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.
Resumo:
In this paper a look is taken at the relatively new area of culturing neural tissue and embodying it in a mobile robot platform—essentially giving a robot a biological brain. Present technology and practice is discussed. New trends and the potential effects of and in this area are also indicated. This has a potential major impact with regard to society and ethical issues and hence some initial observations are made. Some initial issues are also considered with regard to the potential consciousness of such a brain.
Resumo:
This article looks at the use of cultured neural networks as the decision-making mechanism of a control system. In this case biological neurons are grown and trained to act as an artificial intelligence engine. Such research has immediate medical implications as well as enormous potential in computing and robotics. An experimental system involving closed-loop control of a mobile robot by a culture of neurons has been successfully created and is described here. This article gives a brief overview of the problem area and ongoing research. Questions are asked as to where this will lead in the future.
Resumo:
Accurate single trial P300 classification lends itself to fast and accurate control of Brain Computer Interfaces (BCIs). Highly accurate classification of single trial P300 ERPs is achieved by characterizing the EEG via corresponding stationary and time-varying Wackermann parameters. Subsets of maximally discriminating parameters are then selected using the Network Clustering feature selection algorithm and classified with Naive-Bayes and Linear Discriminant Analysis classifiers. Hence the method is assessed on two different data-sets from BCI competitions and is shown to produce accuracies of between approximately 70% and 85%. This is promising for the use of Wackermann parameters as features in the classification of single-trial ERP responses.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.