645 resultados para Ruído sísmico
Resumo:
Tras el catastrófico terremoto ocurrido en Haití el 12 de enero de 2010, de magnitud Mw 7 y profundidad de 10 km, (fuente: USGS) con un epicentro próximo a la capital, Puerto Príncipe (15 km), el país quedo en una situación catastrófica y de extrema pobreza, con necesidades básicas en salud, nutrición, educación y habitabilidad. Pocos meses después se inició el proyecto de cooperación SISMO-HAITI, financiado y coordinado por el Grupo de Investigación en Ingeniería Sísmica (GIIS) de la Universidad Politécnica de Madrid (UPM), con participación de otras universidades españolas y del CSIC y siendo la contraparte Haitiana el Observatorio de Vulnerabilidad y Medio Ambiente (ONEV). Uno de los objetivos del proyecto es el cálculo de peligrosidad sísmica en la Isla de La Española que constituya la base para la elaboración del primer código sísmico del país. El trabajo que aquí se presenta es una aplicación web desarrollada con el Sistema de Información Geográfica (SIG) del proyecto SISMO-HAITI. En esta aplicación se integran los diferentes mapas generados para el cálculo de la peligrosidad sísmica, así como los mapas resultantes, que pueden ser analizados e interpretados con mayor facilidad gracias a la aplicación. Para analizar la influencia de los diferentes inputs de cálculo se ha introducido el catálogo sísmico, las diferentes zonificaciones sismo genéticas y las principales fallas tectónicas. Toda esta información se puede superponer geográficamente con posibilidad de realizar consultas cruzadas en las correspondientes bases de datos, permitiendo el análisis de sensibilidad de éstos en los resultados. El desarrollo de esta aplicación web se ha creado a través de ArcGis Server 10
Resumo:
Un problema importante de ingeniería sísmica es la respuesta de depósitos estratificados de suelos cuando se encuentran sometidos a la acción del terremoto. El problema puede ser directo o inverso, según se pretenda obtener el movimiento en superficie cuando el fondo es solicitado por un sismo dado o, lo que es muy común en la técnica de análisis sísmico, se pretende realizar la deconvolución de un movimiento en superficie hasta una profundidad determinada con objeto de realizar a posteriori un análisis de interacción terreno-estructura. El problema es bien conocido así como sus dificultades relacionadas principalmente con el carácter no lineal del suelo y sus propiedades de amortiguamiento.
Resumo:
La discontinuidad de Mohorovičić, más conocida simplemente como “Moho” constituye la superficie de separación entre los materiales rocosos menos densos de la corteza y los materiales rocosos más densos del manto, suponiendo estas capas de densidad constante del orden de 2.67 y 3.27 g/cm3, y es un contorno básico para cualquier estudio geofísico de la corteza terrestre. Los estudios sísmicos y gravimétricos realizados demuestran que la profundidad del Moho es del orden de 30-40 km por debajo de la Península Ibérica y 5-15 km bajo las zonas marinas. Además las distintas técnicas existentes muestran gran correlación en los resultados. Haciendo la suposición de que el campo de gravedad de la Península Ibérica (como le ocurre al 90% de la Tierra) está isostáticamente compensado por la variable profundidad del Moho, suponiendo un contraste de densidad constante entre la corteza y el manto y siguiendo el modelo isostático de Vening Meinesz (1931), se formula el problema isostático inverso para obtener tal profundidad a partir de la anomalía Bouguer de la gravedad calculada gracias a la gravedad observada en la superficie terrestre. La particularidad de este modelo es la compensación isostática regional de la que parte la teoría, que se asemeja a la realidad en mayor medida que otros modelos existentes, como el de Airy-Heiskanen, que ha sido históricamente el más utilizado en trabajos semejantes. Además, su solución está relacionada con el campo de gravedad global para toda la Tierra, por lo que los actuales modelos gravitacionales, la mayoría derivados de observaciones satelitales, deberían ser importantes fuentes de información para nuestra solución. El objetivo de esta tesis es el estudio con detalle de este método, desarrollado por Helmut Moritz en 1990, que desde entonces ha tenido poca evolución y seguidores y que nunca se ha puesto en práctica en la Península Ibérica. Después de tratar su teoría, desarrollo y aspectos computacionales, se está en posición de obtener un modelo digital del Moho para esta zona a fin de poder utilizarse para el estudio de la distribución de masas bajo la superficie terrestre. A partir de los datos del Moho obtenidos por métodos alternativos se hará una comparación. La precisión de ninguno de estos métodos es extremadamente alta (+5 km aproximadamente). No obstante, en aquellas zonas donde exista una discrepancia de datos significaría un área descompensada, con posibles movimientos tectónicos o alto grado de riesgo sísmico, lo que le da a este estudio un valor añadido. ABSTRACT The Mohorovičić discontinuity, simply known as “Moho” constitutes the division between the rocky and less thick materials of the mantle and the heavier ones in the crust, assuming densities of the orders of 2.67 y 3.27 g/cm3 respectively. It is also a basic contour for every geophysical kind of studies about the terrestrial crust. The seismic and previous gravimetric observations done in the study area show that the Moho depth is of the order of 30-40 km beneath the ground and 5-15 km under the ocean basin. Besides, the different techniques show a good correlation in their results. Assuming that the Iberian Peninsula gravity field (as it happens for the 90% of the Earth) is isostatically compensated according to the variable Moho depth, supposing a constant density contrast between crust and mantle, and following the isostatic Vening Meinesz model (1931), the inverse isostatic problem can be formulated from Bouguer gravity anomaly data obtained thanks to the observed gravity at the surface of the Earth. The main difference between this model and other existing ones, such as Airy- Heiskanen’s (pure local compensation and mostly used in these kinds of works) is the approaching to a regional isostatic compensation, much more in accordance with reality. Besides, its solution is related to the global gravity field, and the current gravitational models -mostly satellite derived- should be important data sources in such solution. The aim of this thesis is to study with detail this method, developed by Helmut Moritz in 1990, which hardly ever has it put into practice. Moreover, it has never been used in Iberia. After studying its theory, development and computational aspects, we are able to get a Digital Moho Model of the Iberian Peninsula, in order to study the masses distribution beneath the Earth’s surface. With the depth Moho information obtained from alternative methods, a comparison will be done. Both methods give results with the same order of accuracy, which is not quite high (+ 5 km approximately). Nevertheless, the areas in which a higher difference is observed would mean a disturbance of the compensation, which could show an unbalanced area with possible tectonic movements or potential seismic risk. It will give us an important additive value, which could be used in, at first, non related fields, such as density discrepancies or natural disasters contingency plans.
Resumo:
Este artículo describe un método simplificado para el estudio de la importancia de los modos locales en el establecimiento de las cargas para el dimensionamiento de las pilas de puentes. El cálculo sísmico de puentes es un tema de moda tras los espectaculares fallos acaecidos durante terremotos recientes y la continua construcción de obras de infraestructura en regiones sísmicas. Los problemas dinámicos planteados por los puentes son cualitativamente diferentes de los de edificación, incluso para el caso más sencillo de vibraciones longitudinales en pasos superiores rectos. A pesar de ello, las normas actuales proponen un método simplificado de "fuerzas equivalentes" basado en la aplicación del método de Rayleigh que no es de aplicación inmediata al cálculo de movimientos transversales o verticales, ya que está basado en un sólo modo; además, como se indica mas adelante, la introducción de apoyos elásticos entre tablero y pilas puede inducir modos locales que son de importancia capital para el cálculo de los esfuerzos en los pilares y que el calculista puede olvidar si aplica a ciegas las reglas habituales de truncamiento modal (por ejemplo, el criterio del 90% de la masa movilizada). El objetivo del artículo es desarrollar un modelo de dos grados de libertad con el que se muestre la importancia de la vobración de los pilares siguiendo un desarrollo asintótico propuesto por Kelly (1988) en otro contexto. Es interesante observar que el método propuesto permite una estimación cualitativa de la importancia de los modos cuya contribución a la solicitación de las columnas puede ser definitiva.
Resumo:
La repentina puesta fuera de servicio de puentes sometidos a la acción sísmica ha despertado un interés creciente por la comprensión de su comportamiento. En puentes pequeños o medianos los terraplenes de acceso son una parte muy significativa de la estructura. La práctica habitual de considerar los apoyos rígidos no representa adecuadamente la realidad, especialmente en puentes del tipo "integral" en que el estribo es solidario del tablero y los movimientos de este actúan directamente sobre el terraplen. El modelado de la rigidez y amortiguamiento de éste debe afectar a la frecuencia propia del sistema global en un sentido semejante al de los cimientos. Por ello, se presenta un sencillo modelo dinámico para el análisis paramétrico de la influencia de las impedancias dinámicas de los estribos en el comportamiento sísmico de puentes con estribo integral, donde se puede observar la influencia que tanto sobre la frecuencia propia como sobre el amortiguamiento globales tiene una correcta cuantifícación de aquéllas.
Resumo:
En los análisis sísmicos por reflexión existe una creciente demanda de estimaciones geológicas y geométricas más precisas y sofisticadas. En último término se pretende extraer estimaciones fiables de las secciones de reflexión, estimaciones que afectan a parámetros tales como la velocidad de propagación, densidad y, por supuesto, contenido de hidrocarburos. Ello exige gran precisión en las técnicas de procesado y representación gráfica, pudiendo decirse que los métodos gráficos interactivos son clave en las tendencias futuras de prospección. Un área de investigación actual es el procesado y representación de datos representados por "horizontes". Un horizonte sísmico se define como la superficie que separa dos capas diferentes de roca. Estas interfases están asociadas a reflexiones que se pueden identificar claramente en las secciones sísmicas. Usando una pantalla gráfica adecuada estos horizontes aparecen coloreados en la sección,pudiendo tornarse puntos selectos para definirlas. Si se utilizan secciones concentradas ("stacked") es preciso determinar la posición correcta de las interfases. Es el proceso llamado "emigración". Tradicionalmente se han aplicado fórmulas de representación o transformaciones integrales para realizar este proceso. Sin embargo es suficiente hacer emigrar las curvas seleccionadas (superficies en el caso 3-D) que representan menos del 1% del total de los datos, con lo que el tiempo de CPU se reduce considerablemente. Si se desprecia la información sobre amplitudes, fases y frecuencias la teoría de rayos es el método más rápido y simple para la conversión en profundidad, poniéndose todo el énfasis en el proceso interactivo y en la representación gráfica. Puesto que en estructuras complejas, como las del Mar del Norte o las del Norte de Alemania, las funciones de velocidad nunca se conocen con precisión, es preciso repetir la emigración mediante diferentes velocidades especificadas por el usuario en forma interactiva. En este artículo se presenta la aplicación del procedimiento para horizontes de separación nula (zero-offset sections) y al final se indica la posibilidad de extensión del estudio a casos con separación constante y al análisis de velocidad.
Resumo:
Este artículo es continuación del publicado en el número 2 de la revista "Anales de Ingeniería Mecánica"(diciembre 1982), sobre los métodos de análisis sísmico por reflexión. Como allí se indicó, con estos métodos se pretende determinar la geometría de los horizontes sísmicos en una determinada sección así como las características físicas de las interfases que separa. En el presente artículo se introducen mejoras en lo que se refiere a tiempo compucional y tipos de campos de velocidades. En este nuevo método propuesto para la resolución del proceso de emigración, mediante un método gráfico interactivo, pueden señalarse como ventjas fundamentales, las siguientes: a) Tiempo de resolución acorde con la complejidad del campo de velocidades, produciéndose economía de dicho tiempo, sobre todo en los casos sencillos; b) El número de elementos de la malla y las dimensiones de los mismos son función de la complejidad del campo de velocidades; c) El estudio en cada elemento se realiza de forma general e independiente. General, en cuanto a que los resultados que se obtienen en cada elemento son valores globales, referidos a la malla y al problema en conjunto, e independiente, puesto que los datos necesarios en cada elemento se obtienen a partir de valores nodales; d) Posibilidad de resolución del problema para un campo de velocidades cualesquiera, y por lo tanto, incluyendo los casos de discontinuidades de velocidad, que se evalúan mediante la ley de Snell; e) Posibilidad de extender el método al caso de tres dimensiones, sin más que elegir como elementos de la malla, tetraedros en vez de triángulos. En conjunto, resulta un método flexible, de fácil utilización e interpretación de resultados.
Resumo:
En el presente trabajo se desarrolla una metodología para caracterizar fallas activas como fuentes sísmicas independientes en combinación con zonas sismogenéticas tipo área de cara a la estimación probabilista poissoniana de la peligrosidad sísmica. Esta metodología está basada en el reparto de la tasa de momento sísmico registrada en una región entre las fuentes potencialmente activas subyacentes (fallas activas modelizadas de forma independiente y una zonificación sismogenética), haciendo especial hincapié en regiones de sismicidad moderada y fallas de lento movimiento. Se desarrolla una aplicación de la metodología en el sureste de España, incorporando al cálculo 106 fuentes sísmicas independientes: 95 de tipo falla (catalogadas como fallas activas en la base de datos QAFI) y 11 zonas sismogenéticas de tipo área. Del mismo modo, se estima la peligrosidad sísmica con el método clásico zonificado y se comparan los resultados, analizando la influencia de la inclusión de las fallas de forma independiente en la estimación de la peligrosidad. Por último, se desarrolla una aplicación de la metodología propuesta en la estimación de la peligrosidad sísmica considerando un modelo temporal no poissoniano. La aplicación se centra en la falla de Carboneras, mostrando la repercusión que puede tener este cambio de modelo temporal en la estimación final de la peligrosidad. ABSTRACT A new methodology of seismic source characterization to be included in poissonian, probabilistic seismic hazard assessments, is developed in this work. Active faults are considered as independent seismogenic sources in combination with seismogenic area sources. This methodology is based in the distribution of the seismic moment rate recorded in a region between the potentially active underlying seismic sources that it contains (active faults modeled independently and an area-source seismic model), with special emphasis on regions with moderate seismicity and faults with slow deformation rates. An application of the methodology is carried out in the southeastern part of Spain, incorporating 106 independent seismic sources in the computations: 95 of fault type (catalogued as active faults in the Quaternary Active Fault Database, QAFI) and 11 of area-source type. At the same time, the seismic hazard is estimated following the classical area-source method. The results obtained using both methodologies (the classical one and the one proposed in this work9 are compared, analyzing the influence of the inclusion of faults as independent sources in hazard estimates. Finally, an application of the proposed methodology considering a non-poissonian time model is shown. This application is carried out in the Carboneras fault and shows the repercussion that this change of time model has in the final hazard estimates.
Resumo:
Puesto que para determinar las demandas de ductilidad en puentes es aconsejable un método no lineal paso a paso y que un proceso de reacondicionamiento sísmico global raramente justifica estos altos costos, se propone un nuevo método simplificado que recoge las ventajas de los métodos no lineales con unos tiempos de resolución y requisitos de memoria similares a los modales-espectrales. Así, en este capítulo se muestra el método, su implementación en ordenador, sus ventajas, inconvenientes y rango de validez, y finalmente se proponen nuevas mejoras o variantes. De los resultados expuestos, al menos para la tipología de estructura analizada, se puede concluir que: 1)El método de la Rótula Plástica proporciona historias de desplazamientos, giros y energías bastantes buenos si se tiene en cuenta que se está en el campo de la Ingeniería Sísmica y que todas las características, propiedades, excitaciones, etc, contienen errores o incertidumbres grandes. 2) Gracias a ellos se puede conocer qué elementos necesitan medidas de reacondicionamiento y cuales no es necesario modificar. 3) Es un método eminentemente conservador, sobre todo en energías absorbidas y cluctiliclacles en los elementos con mayores demandas. 4) Permite obtener un mecanismo de degradación que proporcione una visión general del comportamiento del puente, muy útil en el caso de reaconclicionamiento sísmico.
Resumo:
La República de El Salvador está localizada al norte de Centroamérica, limita al norte con Honduras, al este con Honduras y Nicaragua en el Golfo de Fonseca, al oeste con Guatemala y al sur con el Océano Pacífico. Con una población de casi 6.3 millones de habitantes (2012) y una extensión territorial de algo más de 21.000 km2, es el país más pequeño de toda Centroamérica, con la densidad de población más alta (292 habitantes por km2) y una tasa de pobreza que supera el 34%. Actualmente el 63.2% de la población del país se concentra en las ciudades, y más de la cuarta parte de la población se asienta en el Área Metropolitana de El Salvador (AMSS), lo que supone un área de alrededor del 2.6% del territorio salvadoreño. Según el Banco Mundial, el país tiene un PIB per cápita de 3790 dólares (2012). Asimismo, desde hace ya varios años el elemento clave en la economía salvadoreña ha sido las remesas del exterior, las cuales en el 2006 representaron el 15% del PIB, manteniéndose por varios años consecutivos como la más importante fuente de ingresos externos con que cuenta el país (Comisión Económica para América Latina‐CEPAL, 2007). La inestabilidad económica, la desigual distribución de la riqueza, así como la brecha entre los ámbitos urbano y rural, son las principales causas que limitan las capacidades de desarrollo social del país. El Salvador es uno de los países ecológicamente más devastado de América Latina. Más del 95% de sus bosques tropicales de hojas caducas han sido destruidos y más del 70% de la tierra sufre una severa erosión. Según la FAO el país se encuentra en un franco proceso de desertificación. Como consecuencia de ello, casi todas las especies de animales salvajes se han extinguido o están al borde de la extinción, sin que hasta ahora haya indicios de revertir tal proceso. Por otra parte, en el AMSS el 13% de la población habita sobre terrenos en riesgo por derrumbes o demasiado próximos a fuentes de contaminación (Mansilla, 2009). Por su ubicación geográfica, dinámica natural y territorial, El Salvador ha estado sometido históricamente a diferentes amenazas de origen natural, como terremotos, tormentas tropicales, sequías, actividad volcánica, inundaciones y deslizamientos, los que, sumados a los procesos sociales de transformación (la deforestación, los cambios de uso del suelo y la modificación de los cauces naturales), propician condiciones de riesgo y plantean altas posibilidades de que ocurran desastres. Es evidente que la suma del deterioro económico, social y ambiental, combinado con la multiplicidad de amenazas a las que puede verse sometido el territorio, hacen al país sumamente vulnerable a la ocurrencia de desastres de distintas magnitudes e impactos. En la historia reciente de El Salvador se han producido numerosos eventos de gran magnitud, tales como los terremotos de enero y febrero de 2001. El 13 de enero de 2001 El Salvador sufrió un terremoto de magnitud Mw 7.7 relacionado con la zona de subducción de la placa del Coco bajo la placa Caribe, dejando alrededor de 900 muertos y numerosos daños materiales. A este terremoto le siguió un mes después, el 13 de febrero de 2001, otro de magnitud Mw 6.6 de origen continental que sumó más de 300 víctimas mortales y terminó de derribar gran cantidad de casas ya dañadas por el terremoto anterior. Ambos eventos dispararon enormes deslizamientos de tierra, que fueron los responsables de la mayoría de las muertes. Como se observó durante el terremoto de 2001, este tipo de sismicidad implica un alto riesgo para la sociedad salvadoreña debido a la gran concentración de población en zonas con fuertes pendientes y muy deforestadas susceptibles de sufrir deslizamientos, y debido también a la escasez de planes urbanísticos. La complicada evolución sociopolítica del país durante los últimos 50 años, con una larga guerra civil, ha influido que hayan sido escasas las investigaciones científicas relacionadas con la sismotectónica y el riesgo sísmico asociada a la geología local. La ocurrencia de los terremotos citados disparó un interés a nivel internacional en la adquisición e interpretación de nuevos datos de tectónica activa que con los años han dado lugar a diferentes trabajos. Fue precisamente a partir del interés en estos eventos del 2001 cuando comenzó la colaboración de la Dra. Benito y el Dr. Martínez‐Díaz (directores de esta tesis) en El Salvador (Benito et al. 2004), lo que dio lugar a distintos proyectos de cooperación e investigación que han tenido lugar hasta la actualidad, y que se han centrado en el desarrollo de estudios geológicos, sismológicos para mejorar el cálculo de la amenaza sísmica en El Salvador. Según Martínez‐Díaz et al. (2004) la responsable del terremoto de febrero de 2001 fue la que se denomina como Zona de Falla de El Salvador (ZFES), una zona de falla que atraviesa el país de este a oeste que no había sido descrita con anterioridad. Con el fin de estudiar y caracterizar el comportamiento de este sistema de fallas para su introducción en la evaluación de la amenaza sísmica de la zona se plantean diferentes estudios sismotectónicos y paleosísmicos, y, entre ellos, esta tesis que surge de la necesidad de estudiar el comportamiento cinemático actual de la ZFES, mediante la aplicación de técnicas geodésicas (GNSS) y su integración con datos geológicos y sismológicos. Con el objetivo de reconocer la ZFES y estudiar la viabilidad de la aplicación de estas técnicas en la zona de estudio, realicé mi primer viaje a El Salvador en septiembre de 2006. A raíz de este viaje, en 2007, comienza el proyecto ZFESNet (Staller et al., 2008) estableciendo las primeras estaciones y realizando la primera campaña de observación en la ZFES. Han sido 6 años de mediciones e intenso trabajo de lo que hoy se obtienen los primeros resultados. El interés que despiertan los terremotos y sus efectos, así como la vulnerabilidad que tiene El Salvador a estos eventos, ha sido para la autora un aliciente añadido a su trabajo, animándola a perseverar en el desarrollo de su tesis, a pesar de la multitud de imprevistos y problemas que han surgido durante su transcurso. La aportación de esta tesis al conocimiento actual de la ZFES se espera que sea un germen para futuras investigaciones y en particular para mejorar la evaluación de la amenaza sísmica de la zona. No obstante, se hace hincapié en que tan importante como el conocimiento de las fuentes sísmicas es su uso en la planificación urbanística del terreno y en la elaboración de normas sismoresistentes y su aplicación por parte de los responsables, lo cual ayudaría a paliar los efectos de fenómenos naturales como el terremoto, el cual no podemos evitar. El proyecto ZFESNet ha sido financiado fundamentalmente por tres proyectos de las convocatorias anuales de Ayudas para la realización de actividades con Latinoamérica de la UPM, de los que la autora de esta tesis ha sido la responsable, estos son: “Establecimiento de una Red de Control GPS en la Zona de Falla de El Salvador”, “Determinación de deformaciones y desplazamientos en la Zona de Falla de El Salvador” y “Determinación de deformaciones y desplazamientos en la Zona de Falla de El Salvador II”, y parcialmente por el proyecto de la Agencia Española de Cooperación y Desarrollo (AECID); “Desarrollo de estudios geológicos y sismológicos en El Salvador dirigidos a la mitigación del riesgo sísmico”, y el Proyecto Nacional I+D+i SISMOCAES: “Estudios geológicos y sísmicos en Centroamérica y lecciones hacia la evaluación del riesgo sísmico en el sur de España”.
Resumo:
Los métodos numéricos aplicados al estudio de estructuras sometidas a esfuezos de origen sísmico han sido utilizados habitualmente en ingeniería. La limitación tradicional con que se encontraba el analista radicaba en el enorme esfuerzo de cálculo mecánico necesario para obtener respuestas significativas tan pronto como el modelo matemático a analizar presentaba una cierta complejidad. Esta situación se vió sustancialmente modificada por la aparición del ordenador que, justamente, libera al proyectista del trabajo repetitivo irracional y permite dedicar tiempo a la reflexión, a la par que aumenta espectacularmente la capacidad de modelado. No es extraño pues, que en los ultimos 30 años se haya asistido a un renacimiento de una rama de la Matemática que parecía agostada y que ,fecundada por la nueva herramienta ha florecido en un sinf{n de técnicas y procedimientos que ponen al alcance del ingeniero el análisis de virtualmente, cualquier problema estructural. En este capítulo se pretende exponer algunas de las ideas subyacentes en estos métodos nuevos así como su posible aplicación al campo que nos interesa. Evidentemente, la limitación de espacio impedirá profundizar adecuadamente en los temas, pero la finalidad última será dotar al estudioso de un marco general en el que situar posteriores aventuras intelectuales. El contenido se articula en tres grupos principales que se refieren, respectivamente al modelado de la solicitación sísmica, de la estructura y cimiento, y al análisis de la respuesta. Tras lo dicho anteriormente, una exposición que no incluyese alguna manifestación palpable de la influencia de la máquina, estaría indefectiblemente esviada. Por ello, se incluyen como apéndices cuatro bloques de subrutinas; dos de ellas, en lenguaje Basic de microordenador, se refeiren a la transformada rápida de Fourier de la que se hablará más adelante, y al cálculo de autovalores de estructuras formadas por barras; la tercera es un pequeño programa en Fortran IV, que permite obtener la respuesta de un sistema de un grado de libertad por un método de integracidn paso a paso. En el primer apartado se inserta tambien un programa de determinación de hipocentros. Todas las subrutinas son elementales y ampliamente mejorables. Creemos sin embargo que ello las hace especialmente legibles lo que puede impeler su uso y mejora par el estudiante ; intervención, en definitiva ,deseada y que es el más importante objetivo al que aspiramos.
Resumo:
Actualmente, diversos terremotos han puesto de manifiesto la importancia de planificar las ciudades y la gran influencia que tiene el comportamiento de los edificios como consecuencia de los resultados de pérdidas humanas y económicas. Ante la imposibilidad de evitar la ocurrencia de terremotos y de predecirlos con un margen pequeño de tiempo para tomar acciones a corto plazo, la reducción de la vulnerabilidad de los elementos expuestos es la medida más eficaz para prevenir los daños y para evitar el desastre. Existen varios estudios anteriores de Norman B. Green (1980), Teresa Guevara López (2009 y 2012) que recogen criterios ya generalizados dentro de la bibliografía sísmica y algunos aspectos procedentes de norma sísmicas precursoras en este campo (por ejemplo, las peruanas) para establecer inicialmente unos principios urbanístico-sísmicos. Además, varios proyectos relacionados con el riesgo sísmico, RisK-Ue (2003), SERAMAR (Lars Abrahamczyk et al., 2013) han desarrollado metodologías que clasifican la vulnerabilidad de los edificios teniendo en cuenta modificadores por comportamientos y configuraciones irregulares sísmicamente. El presente trabajo desarrolla una metodología empírica para identificar y caracterizar los parámetros urbanísticos que determinan una respuesta sísmica irregular de las edificaciones, graduar su relación con el daño tras un terremoto y poder así disminuir la vulnerabilidad sísmica de las ciudades. La metodología desarrollada en esta tesis doctoral se aplica en la ciudad de Lorca, Región de Murcia. Se realiza un trabajo de campo donde se clasifican los edificios según su tipología estructural y sus parámetros urbanísticos. A través de un estudio estadístico se analiza la correlación con el daño de las edificaciones tras el terremoto del 11 de mayo de 2011. Previamente se ha hecho una clasificación de los edificios según la clase de suelo en la que se encuentran según el Eurocódigo8 (Navarro et al, 2012). Por último, se aplica la metodología para obtener una estimación de la habitabilidad de los edificios en Lorca post sismo. Para esta clasificación se ha adoptado el criterio recogido en diversas recomendaciones internacionales, la mayoría de las cuales se basan en la documentación generada por el ATC- Applied Technology Council, distinguiendo entre edificios habitables (no daño-daño no estructural) y edificios no habitables (daño estructural). ABSTRACT Currently, various earthquakes have made clear first, the importance of city planning and secondly, the great influence that has the behaviour of buildings as a consequence of the results of human and economic losses. Faced with the impossibility of avoiding the occurrence of earthquakes and predicting its with a small margin of time to take action in the short term, the reduction of the vulnerability of exposed elements is the most effective measure to prevent damage and to prevent the disaster. There are several previous studies, Norman B. Green (1980), Teresa Guevara López (2009-2012) collecting criteria already widespread within the seismic bibliography and we can find some aspects from standard seismic precursor in this field (for example, the Peruvian) to initially establish urban - seismic principles. In addition, several projects related to seismic risk, RisK-EU (2003), SERAMAR (Lars Abrahamczyk et al., 2013) have developed methodologies that classify the vulnerability of buildings taking into account modifiers for behaviours and irregular configurations in seismical terms. This paper develops an empirical methodology to identify and characterize the irregular urban parameters seismically, graduate its relationship with the building damages after an earthquake and thus reduce the seismic vulnerability of cities. The methodology developed in this thesis applies in the city of Lorca, Region of Murcia. Fieldwork where buildings are classified according to their structural type and its urban performance parameters. Through a statistical study the correlation with damage of buildings is analyzed after the earthquake of May 11, 2011. Previously a classification of the buildings has been made according to the kind of soil according to the Eurocodigo 8 (Navarro et al, 2012). Finally, you get an estimate of the building habitability in Lorca. As a result, this classification adopted the criterion contained in various international recommendations, most of which are based on the documentation published by the ATC - Applied Technology Council, habitable buildings (not damage -damage non-structural) and non habitable buildings (structural damage).
Resumo:
En el primer capítulo se analizan las generalidades relativas al sismo. Tras algunas consideraciones sobre los fenómenos que aparecen durante un terremoto se describen algunos ejemplos históricos que han sido determinantes en el desarrollo del conocimiento y, finalmente, se plantean algunos problemas típicos de la ingeniería sísmica. En el siguiente capítulo se resumen algunos conceptos utilizados en la descripción física de la acción. Se trata de una presentación muy somera de temas en continua evolución. Se comienza con unas indicaciones sobre tectónica global que permiten hacerse una idea del origen de los terremotos en un marco general. A continuación se recuerdan algunos conceptos imprescindibles sobre propagación de ondas en medios elásticos, lo que permite comentar la composición de los acelerogramas, la estructura interna de la tierra y la localización de terremotos. Finalmente se incluyen las definiciones fenomenológicas e instrumentales utilizadas para describir el sismo, así como algunas correlaciones habituales entre ellas. En el capítulo posterior se desarrollan los criterios que permiten fijar la importancia de la acción sísmica en un emplazamiento determinado. Aunque aquéllos son semejantes para una cuantificación global y local se va a poner especial énfasis en la explicación de los métodos que han llevado al establecimiento del mapa sísmico español. En general cabe decir que el proyectista necesita evaluar los riesgos de diferentes niveles de daño con objeto de comparar soluciones alternativas. Para ello se precisa ser capaz de cuantificar y localizar la importancia de los sismos, el daño que producen en las estructuras así como cuantificar el coste generalizado (coste inicial+ beneficios+ coste de reparación) de la construcción. Tradicionalmente se ha empleado un enfoque determinista en que la solicitación sísmica se tomaba semejante a la máxima registrada históricamente. Tan solo en épocas recientes se ha impuesto una filosofía probabilista basada fundamentalmente en ideas expuestas por Cornell y Esteva en los años sesenta. En ambos casos se recurre a un estudio detallado de la estructura geotectónica de la región, en especial sus fallas activas, así como a la historia sísmica con localización de epicentros y asignación de intensidades que en nuestro país se puede basar en los catálogos existentes. En el caso determinista se postula que el máximo sismo histórico de cada falla se produce en la zona más próxima al emplazamiento, y utilizando fórmulas de atenuación se obtiene la característica de interés en aquel. En el último capítulo se van a describir métodos que, además de su aplicabilidad a sismos concretos han permitido la identificación de propiedades globales y, por tanto, la definición de la acción en función de un número limitado de parámetros. Aunque en un principio la descripción temporal fue la más usada, se ha observado que el contenido en frecuencias tiene una importancia capital y por ello se presentan sucesivamente ambos enfoques. Se dedica un apartado especial al concepto de espectro de respuesta elástica ya que está en la base de la mayoría de las recomendaciones de la normativa y recoge en forma muy sencilla una impresionante cantidad de información. Finalmente, se realizan breves indicaciones sobre los procedimientos utilizados para generar acelerogramas sintéticos que gocen de algunas de las propiedades globales puestas de manifiesto por las representaciones anteriores. Conviene remarcar que la importancia de los conceptos de densidad espectral o espectro de respuesta, radican no sólo en su capacidad para representar propiedades de un sismo dado sino, a través de su correspondiente normalización y promediación. En el último capítulo se incluyen algunas observaciones de interés sobre las modificaciones que las condiciones locales del suelo introducen en el movimiento sísmico.
Resumo:
La importancia que presenta la respuesta del suelo sobre el que se ubica una estructura ante un posible movimiento sísmico, así como la interacción suelo-estructura en terrenos blandos, son cuestiones que adquieren especial relevancia en el diseño de obras especiales como son las centrales nucleares. Ello exige un conocimiento previo de las características de amplificación del suelo, al cual se dedica este artículo.
Resumo:
En el análisis de estructuras situadas en un emplazamiento de riesgo sísmico, es necesario conocer las característiias de un posible movimiento sísmico actuante, en la cota de cimentación de la estructura. La importancia del papel que juega el suelo circundante a la estructura en la modificación de las características del movimientos sísmico (principalmente en cuanto a amplitudes y contenido frecuencial), es bien conocida, denominándose amplificación sísmica a este fenómeno. En el caso de estructuras importantes, como Centrales Nucleares, presas, etc., o terrenos muy blandos, la presencia de la propia estructura también afecta de forma significativa al movimiento, dando lu gar al fenómeno de la interacción suelo-estructura. En esta comunicación se tratará únicamente del problema de la amplificación de las ondas sísmicas causantes del movimiento del suelo, y del análisis de la respuesta del mismo en ausencia de la estructura. Este movimiento del suelo denominado "movimiento del campo libre"(free field motion) puede, bien ser utilizado directamente en el análisis de la estructura, despreciando los efectos de la interacción, o emplearse como "input" en ciertas técnicas de análisis de interacción suelo-estructura.