947 resultados para Rotating Inertia.
Resumo:
A microgrid contains both distributed generators (DGs) and loads and can be viewed by a controllable load by utilities. The DGs can be either inertial synchronous generators or non-inertial converter interfaced. Moreover, some of them can come online or go offline in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new phase locked loop (PLL) algorithm is proposed for smooth synchronization of plug and play DGs. A frequency droop for power sharing is used and a pseudo inertia has been introduced to non-inertial DGs in order to match their response with inertial DGs. The proposed strategy is validated through PSCAD simulation studies.
Resumo:
Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. The creative work titled “Contours in Motion” was the first in a series of studies on captured motion data used to generating experimental visual forms that reverberate in space and time. With the source or ‘seed’ comes from using an Xsens MVN - Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. The aim of the creative work was to diverge way from a standard practice of using particle system and/or a simple re-targeting of the motion data to drive a 3d character as a means to produce abstracted visual forms. To facilitate this divergence a virtual dynamic object was tether to a selection of data points from a captured performance. The proprieties of the dynamic object were then adjusted to balance the influences from the human movement data with the influence of computer based randomization. The resulting outcome was a visual form that surpassed simple data visualization to project the intent of the performer’s movements into a visual shape itself. The reported outcomes from this investigation have contributed to a larger study on the use of motion capture in the generative arts, furthering the understanding of and generating theories on practice.
Resumo:
The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.
Resumo:
Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.
Resumo:
PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.
Resumo:
This paper describes and analyzes research on the dynamics of long-term care and the policy relevance of identifying the sources of persistence in caregiving arrangements (including the effect of dynamics on parameter estimates, implications for family welfare, parent welfare, child welfare, and cost of government programs). We discuss sources and causes of observed persistence in caregiving arrangements including inertia/state dependence (confounded by unobserved heterogeneity) and costs of changing caregivers. We comment on causes of dynamics including learning/human capital accumulation; burnout; and game-playing. We suggest how to deal with endogenous geography; dynamics in discrete and continuous choices; and equilibrium issues (multiple equilibria, dynamic equilibria). We also present an overview of commonly used longitudinal data sets and evaluate their relative advantages/disadvantages. We also discuss other data issues related to noisy measures of wealth and family structure. Finally, we suggest some methods to handle econometric problems such as endogeneous geography. © 2014 Springer Science+Business Media New York.
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
Background Person-to-person transmission of respiratory pathogens, including Pseudomonas aeruginosa, is a challenge facing many cystic fibrosis (CF) centres. Viable P aeruginosa are contained in aerosols produced during coughing, raising the possibility of airborne transmission. Methods Using purpose-built equipment, we measured viable P aeruginosa in cough aerosols at 1, 2 and 4 m from the subject (distance) and after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimise gravitational settling and inertial impaction (duration). Aerosol particles were captured and sized employing an Anderson Impactor and cultured using conventional microbiology. Sputum was also cultured and lung function and respiratory muscle strength measured. Results Nineteen patients with CF, mean age 25.8 (SD 9.2) years, chronically infected with P aeruginosa, and 10 healthy controls, 26.5 (8.7) years, participated. Viable P aeruginosa were detected in cough aerosols from all patients with CF, but not from controls; travelling 4 m in 17/18 (94%) and persisting for 45 min in 14/18 (78%) of the CF group. Marked inter-subject heterogeneity of P aeruginosa aerosol colony counts was seen and correlated strongly (r=0.73–0.90) with sputum bacterial loads. Modelling decay of viable P aeruginosa in a clinic room suggested that at the recommended ventilation rate of two air changes per hour almost 50 min were required for 90% to be removed after an infected patient left the room. Conclusions Viable P aeruginosa in cough aerosols travel further and last longer than recognised previously, providing additional evidence of airborne transmission between patients with CF.
Resumo:
The continuous steady-state current drive in a spherical argon plasma by transverse oscillating magnetic field (OMF) is investigated. The experimental results reveal that a rotating magnetic field is generated, and its amplitude depends linearly on the external steady vertical magnetic field. It has been shown that steady toroidal currents of up to about 400 A can be driven by a 490 kHz OMF with an input power of 1.4 kW. The generation of steady toroidal magnetic fields directed oppositely in the upper and lower hemispheres have been recorded. The measurements of time-varying magnetic fields unveil a strong nonlinear effect of the frequency-doubled field harmonics generation. The electron number density and temperature of up to 6.2×1018 m-3 and 12 eV have been obtained. The observed effects validate the existing theory of the OMF current drive in spherical plasmas.
Resumo:
The series expansion of the plasma fields and currents in vector spherical harmonics has been demonstrated to be an efficient technique for solution of nonlinear problems in spherically bounded plasmas. Using this technique, it is possible to describe the nonlinear plasma response to the rotating high-frequency magnetic field applied to the magnetically confined plasma sphere. The effect of the external magnetic field on the current drive and field configuration is studied. The results obtained are important for continuous current drive experiments in compact toruses. © 2000 American Institute of Physics.
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Resumo:
"Future Perfect" is a solo artist exhibition featuring a 9 channel video installation, which is comprised of looped computer animation projections. In the first room, the big one, there are nine projections of looped computer animations. Many of these look like representations of gallery spaces containing sculptures, including rotating interpenetrating discs, bouncing coloured coffins, and jostling cardboard cubes (the cubes are blank, then covered in drawings, then covered in photographic imagery). In one video, a man and a woman walk towards one another but never get together. In the second room, an animated video on a flatscreen suggests an origin story. The subtitles tell how, in Russia, my great-grandfather made a joke about Stalin's child bride that cost him his life. That one isn’t a loop; it has a beginning, middle, and end. Lying on the floor, in front of the video, are two slightly crumpled mural prints of photographs of the ocean. There's also a clear Perspex cloud shape on a wall. Viewers will see themselves reflected in it, as if it were a distant hovering mirage. The first room of the exhibition, where objects are set in perpetual motion, is about departure. The second room registers some sense of arrival. The future perfect implies looking back on something that hasn't happened yet; future and past are conflated and the present is somehow deferred. The future perfect combines anticipation and reflection, and it relates to my interest in combining 3-D animation with other mediums like drawing, painting, and shot video. In my work, the virtual and actual coexist in tension, just like experience and expectation in the future perfect.
Resumo:
In this paper, a method of thrust allocation based on a linearly constrained quadratic cost function capable of handling rotating azimuths is presented. The problem formulation accounts for magnitude and rate constraints on both thruster forces and azimuth angles. The advantage of this formulation is that the solution can be found with a finite number of iterations for each time step. Experiments with a model ship are used to validate the thrust allocation system.
Resumo:
The palette of fluorescent proteins (FPs) has grown exponentially over the past decade, and as a result, live imaging of cells expressing fluorescently tagged proteins is becoming more and more mainstream. Spinning disk confocal (SDC) microscopy is a high-speed optical sectioning technique and a method of choice to observe and analyze intracellular FP dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low-noise scientific grade-cooled charge-coupled device cameras, and can achieve frame rates of up to 1000 frames per second. In this chapter, we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy and provide a rationale for specific design choices. We also give guidelines of how other imaging techniques such as total internal reflection microscopy or spatially controlled photoactivation can be coupled with SDC imaging and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction.