864 resultados para Robust controllers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future role and structure of Australian general practice remains uncertain, despite a decade of seemingly constant change following the release of the National Health Strategy papers. Some of the suggested change strategies (such as rural Practice Incentive Payments and practice accreditation) have been implemented; others (such as general practitioner involvement with area health authorities in delivering national goals and targets for communities) still await attention. An overarching vision for our health care system in 2020 and general practice's role within it are still to be clearly enunciated. Australia is at variance with other Western countries, such as the United Kingdom, Canada and New Zealand, which have spent significant time refocusing their health systems to deal with an ageing population with an increased burden of chronic disease. Health bureaucrats and governments need to invest strategically in operational primary care now. This will require the active commitment of general practice's national bodies to articulate and actively promote a shared vision for Australian general practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of critical challenges in automatic recognition of TV commercials is to generate a unique, robust and compact signature. Uniqueness indicates the ability to identify the similarity among the commercial video clips which may have slight content variation. Robustness means the ability to match commercial video clips containing the same content but probably with different digitalization/encoding, some noise data, and/or transmission and recording distortion. Efficiency is about the capability of effectively matching commercial video sequences with a low computation cost and storage overhead. In this paper, we present a binary signature based method, which meets all the three criteria above, by combining the techniques of ordinal and color measurements. Experimental results on a real large commercial video database show that our novel approach delivers a significantly better performance comparing to the existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most face recognition systems only work well under quite constrained environments. In particular, the illumination conditions, facial expressions and head pose must be tightly controlled for good recognition performance. In 2004, we proposed a new face recognition algorithm, Adaptive Principal Component Analysis (APCA) [4], which performs well against both lighting variation and expression change. But like other eigenface-derived face recognition algorithms, APCA only performs well with frontal face images. The work presented in this paper is an extension of our previous work to also accommodate variations in head pose. Following the approach of Cootes et al, we develop a face model and a rotation model which can be used to interpret facial features and synthesize realistic frontal face images when given a single novel face image. We use a Viola-Jones based face detector to detect the face in real-time and thus solve the initialization problem for our Active Appearance Model search. Experiments show that our approach can achieve good recognition rates on face images across a wide range of head poses. Indeed recognition rates are improved by up to a factor of 5 compared to standard PCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We motivate and study the robustness of fairness notions under refinement of transitions and places in Petri nets. We show that the classical notions of weak and strong fairness are not robust and we propose a hierarchy of increasingly strong, refinement-robust fairness notions. That hierarchy is based on the conflict structure of transitions, which characterizes the interplay between choice and synchronization in a fairness notion. Our fairness notions are defined on non-sequential runs, but we show that the most important notions can be easily expressed on sequential runs as well. The hierarchy is further motivated by a brief discussion on the computational power of the fairness notions.