847 resultados para Robotic manipulators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking" mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain. © 2010 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform by analyzing the kinematics and ground reaction force. The experimental results show that, with a proper leg design of passive dynamics and elasticity, an attractor state of human-like walking gait patterns can be achieved through extremely simple control without sensory feedback. The detailed analysis also explains how the dynamic human-like gait can contribute to adaptive biped walking. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. METHODOLOGY: This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. CONCLUSIONS/SIGNIFICANCE: The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robust climbing in unstructured environments is a long-standing challenge in robotics research. Recently there has been an increasing interest in using adhesive materials for that purpose. For example, a climbing robot using hot melt adhesives (HMAs) has demonstrated advantages in high attachment strength, reasonable operation costs, and applicability to different surfaces. Despite the advantages, there still remain several problems related to the attachment and detachment operations, which prevent this approach from being used in a broader range of applications. Among others, one of the main problems lies in the fact that the adhesive characteristics of this material were not fully understood fin the context of robotic climbing locomotion. As a result, the previous robot often could not achieve expected locomotion performances and "contaminated" the environment with HMAs left behind. In order to improve the locomotion performances, this paper focuses on attachment and detachment operations in robot climbing with HMAs. By systematically analyzing the adhesive property and bonding strength of HMAs to different materials, we propose a novel detachment mechanism that substantially improves climbing performances without HMA traces. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been an increasing interest in the use of unconventional materials and morphologies in robotic systems because the underlying mechanical properties (such as body shapes, elasticity, viscosity, softness, density and stickiness) are crucial research topics for our in-depth understanding of embodied intelligence. The detailed investigations of physical system-environment interactions are particularly important for systematic development of technologies and theories of emergent adaptive behaviors. Based on the presentations and discussion in the Future Emerging Technology (fet11) conference, this article introduces the recent technological development in the field of soft robotics, and speculates about the implications and challenges in the robotics and embodied intelligence research. © Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throwing is a complex and highly dynamic task. Humans usually exploit passive dynamics of their limbs to optimize their movement and muscle activation. In order to approach human throwing, we developed a double pendulum robotic platform. To introduce passivity into the actuated joints, clutches were included in the drive train. In this paper, we demonstrate the advantage of exploiting passive dynamics in reducing the mechanical work. However, engaging and disengaging the clutches are done in discrete fashions. Therefore, we propose an optimization approach which can deal with such discontinuities. It is shown that properly engaging/disengaging the clutches can reduce the mechanical work of a throwing task. The result is compared to the solution of fully actuated double pendulum, both in simulation and experiment. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the underlying mechanisms of animals' agility, dexterity and efficiency in motor control, there has been an increasing interest in the study of gait patterns in biological and artificial legged systems. This paper presents a novel approach to the study of gait patterns which makes use of intrinsic mechanical dynamics of robotic systems. Each of these robots consists of a U-shape elastic beam and exploits free vibration to generate different gait patterns. We developed a conceptual model for these robots, and through simulation and real-world experiments, we show three distinct mechanisms for generating four different gait patterns in these robots. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Legged locomotion of biological systems can be viewed as a self-organizing process of highly complex system-environment interactions. Walking behavior is, for example, generated from the interactions between many mechanical components (e.g., physical interactions between feet and ground, skeletons and muscle-tendon systems), and distributed informational processes (e.g., sensory information processing, sensory-motor control in central nervous system, and reflexes) [21]. An interesting aspect of legged locomotion study lies in the fact that there are multiple levels of self-organization processes (at the levels of mechanical dynamics, sensory-motor control, and learning). Previously, the self-organization of mechanical dynamics was nicely demonstrated by the so-called Passive Dynamic Walkers (PDWs; [18]). The PDW is a purely mechanical structure consisting of body, thigh, and shank limbs that are connected by passive joints. When placed on a shallow slope, it exhibits natural bipedal walking dynamics by converting potential to kinetic energy without any actuation. An important contribution of these case studies is that, if designed properly, mechanical dynamics can generate a relatively complex locomotion dynamics, on the one hand, and the mechanical dynamics induces self-stability against small disturbances without any explicit control of motors, on the other. The basic principle of the mechanical self-stability appears to be fairly general that there are several different physics models that exhibit similar characteristics in different kinds of behaviors (e.g., hopping, running, and swimming; [2, 4, 9, 16, 19]), and a number of robotic platforms have been developed based on them [1, 8, 13, 22]. © 2009 Springer London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human and animal running spring-like leg behavior is found, and similar concepts have been demonstrated by various robotic systems in the past. In general, a spring-mass model provides self-stabilizing characteristics against external perturbations originated in leg-ground interactions and motor control. Although most of these systems made use of linear spring-like legs. The question addressed in this paper is the influence of leg segmentation (i.e. the use of rotational joint and two limb-segments) to the self-stability of running, as it appears to be a common design principle in nature. This paper shows that, with the leg segmentation, the system is able to perform self-stable running behavior in significantly broader ranges of running speed and control parameters (e.g. control of angle of attack at touchdown, and adjustment of spring stiffness) by exploiting a nonlinear relationship between leg force and leg compression. The concept is investigated by using a two-segment leg model and a robotic platform, which demonstrate the plausibility in the real world. ©2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While underactuated robotic systems are capable of energy efficient and rapid dynamic behavior, we still do not fully understand how body dynamics can be actively used for adaptive behavior in complex unstructured environment. In particular, we can expect that the robotic systems could achieve high maneuverability by flexibly storing and releasing energy through the motor control of the physical interaction between the body and the environment. This paper presents a minimalistic optimization strategy of motor control policy for underactuated legged robotic systems. Based on a reinforcement learning algorithm, we propose an optimization scheme, with which the robot can exploit passive elasticity for hopping forward while maintaining the stability of locomotion process in the environment with a series of large changes of ground surface. We show a case study of a simple one-legged robot which consists of a servomotor and a passive elastic joint. The dynamics and learning performance of the robot model are tested in simulation, and then transferred the results to the real-world robot. ©2007 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform with respect to the kinematics and the ground reaction force. The experimental results show that the behavior of this simple locomotion model shows a considerable similarity to that of human walking. © 2006 The authors.