878 resultados para Review [Publication Type]
Resumo:
There is growing evidence that climate change could affect marine benthic systems. This review provides information of climate change‐related impacts on the marine benthos in the North Atlantic. We cover a number of related research aspects, mainly in connection to two key issues. First, is the relationship between different physical aspects of climate change and the marine benthos. This section covers: (a) the responses to changes in seawater temperature (biogeographic shifts and phenology); (b) altered Hydrodynamics; (c) ocean acidification (OA); and (d) sea‐level rise‐coastal squeeze. The second major issue addressed is the possible integrated impact of climate change on the benthos. This work is based on relationships between proxies for climate variability, notably the North Atlantic Oscillation (NAO) index, and the long‐term marine benthos. The final section of our review provides a series of conclusions and future directions to support climate change research on marine benthic systems. WIREs Clim Change 2015, 6:203–223. doi: 10.1002/wcc.330
Resumo:
The beneficial effects of blue environments have been well documented; however, we do not know how marine litter might modify these effects. Three studies adopted a picture-rating task to examine the influence of litter on preference, perceived restorative quality, and psychological impacts. Photographs varied the presence of marine litter (Study 1) and the type of litter (Studies 2 and 3). The influence of tide and the role of connectedness were also explored. Using both quantitative and qualitative methods, it was shown that litter can undermine the psychological benefits that the coast ordinarily provides, thus demonstrating that, in addition to environmental costs of marine litter, there are also costs to people. Litter stemming from the public had the most negative impact. This research extends our understanding of the psychological benefits from natural coastal environments and the threats to these benefits from abundant and increasing marine litter
Resumo:
Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed.
Resumo:
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions.
Resumo:
Antecedentes. Pes Adulto planus (pie plano) es un problema común encontrado por muchos profesionales de la salud. A pesar de la percepción de que el pie plano puede causar dolor y deteriorar su función, la disponibilidad y el uso generalizado de diversos tratamientos, no hay consenso sobre la estrategia óptima de tratamiento. Objetivo. Evaluar la efectividad de las intervenciones conservadoras (no quirúrgicos) para pie plano en los adultos. Método. Se realizó una búsqueda sistemática de la literatura. Esto incluye: el Registro Cochrane Central de Ensayos Controlados; los Juicios CMSG Especializados Registro; una búsqueda electrónica se realizó utilizando MEDLINE (1960 a junio de 2012), EMBASE (1980 a junio de 2012), y CINAHL (1982 - junio de 2012). Revistas especializadas, listas de referencias de ensayos y artículos de revisión se realizaron búsquedas manuales. Criterios de selección: Ensayos aleatorios o cuasialeatorios de intervenciones de tratamiento para el pie plano en los adultos. Se excluyeron los ensayos que incluyeron patologías específicas como el dolor plantar del talón, las fracturas por sobrecarga de los metatarsianos, disfunción del tendón tibial posterior-, fracturas de tobillo, patologías del pie reumatoide, enfermedades neuromusculares y las complicaciones del pie diabético. Recopilación y análisis de datos: Dos autores seleccionaron de forma independiente los resultados de la búsqueda para identificar a aquellos que satisfacen los criterios de inclusión y evaluaron la calidad de los incluidos mediante una lista de control basado en la Evaluación de la Colaboración Cochrane de Riesgo. Esta herramienta se centró en el riesgo de la selección, el rendimiento, la detección, la heterogeneidad y el sesgo de notificación. Resultados. Cuatro ensayos, con 140 sujetos, cumplieron los criterios de inclusión para la revisión. Los cuatro fueron juzgados como de alto riesgo de sesgo en al menos un área, y también estaban en riesgo de sesgo incierto en al menos otra zona. Todos anotaron altamente en relación al sesgo de deserción, debido al corto seguimiento tiempos y diseños experimentales utilizados. Los datos no se agruparon debido al alto nivel de heterogeneidad identificada en las intervenciones evaluadas, los participantes seleccionados y medir los resultados. Los resultados de un estudio sugieren que después de cuatro semanas de uso ortesis puede resultar en una mejora significativa en vaivén lateral medio, y pueden resultar en una mejor, aunque no significativa, en general relacionados con la calidad de vida de los pies (Roma 2004). Un estudio (Redmond 2009) sugiere que su efecto sobre la distribución de la presión plantar en el pie puede no depender de si son personalizados o dispositivos prefabricados. Aunque este estudio se identificaron cambios significativos en algunas variables de presión plantar tanto con la costumbre y dispositivos prefabricados, otro (Esterman 2005) no encontró ningún efecto significativo de longitud ¾ ortesis prefabricadas sobre el dolor, la incidencia de lesiones, salud pie o de calidad de vida en un grupo de reclutas de la fuerza aérea. El cuarto estudio (Jung 2009) sugiere que el ejercicio de los músculos intrínsecos del pie puede mejorar el efecto de las ortesis. A pesar de estos resultados, ya que cada estudio incurrió riesgo de sesgo en al menos un área no se pueden sacar conclusiones
Resumo:
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.
Resumo:
Background: Greater dietary intakes of n–3 long-chain polyunsaturated fatty acids (n–3 PUFAs) may be beneficial for depressed mood. Objective: This study aimed to systematically review all published randomized controlled trials investigating the effects of n–3 PUFAs on depressed mood. Design: Eight medical and health databases were searched over all years of records until June 2006 for trials that exposed participants to n–3 PUFAs or fish, measured depressed mood, were conducted on human participants, and included a comparison group. Results: Eighteen randomized controlled trials were identified; 12 were included in a meta-analysis. The pooled standardized difference in mean outcome (fixed-effects model) was 0.13 SDs (95% CI: 0.01, 0.25) in those receiving n–3 PUFAs compared with placebo, with strong evidence of heterogeneity (I2 = 79%, P <0.001). The presence of funnel plot asymmetry suggested that publication bias was the likely source of heterogeneity. Sensitivity analyses that excluded one large trial increased the effect size estimates but did not reduce heterogeneity. Metaregression provided some evidence that the effect was stronger in trials involving populations with major depression—the difference in the effect size estimates was 0.73 (95% CI: 0.05, 1.41; P = 0.04), but there was still considerable heterogeneity when trials that involved populations with major depression were pooled separately (I2 = 72%, P <0.001). Conclusions: Trial evidence that examines the effects of n–3 PUFAs on depressed mood is limited and is difficult to summarize and evaluate because of considerable heterogeneity. The evidence available provides little support for the use of n–3 PUFAs to improve depressed mood. Larger trials with adequate power to detect clinically important benefits are required.