668 resultados para Restrained Occupants.
Resumo:
El objetivo del presente proyecto es el diseño de una vivienda unifamiliar de manera que el aporte de energía no renovable sea el mínimo para conseguir las condiciones de confort óptimas para los ocupantes durante todo el año. Para su diseño se tendrá en cuenta el aporte de energía solar pasiva y el uso de aislantes térmicos a lo largo de la envolvente para la reducción de las necesidades de energía. Se dimensiona una instalación geotérmica para el abastecimiento de calefacción, refrigeración y agua caliente sanitaria (ACS). En este dimensionamiento se incluyen los sondeos geotérmicos, el equipo de bomba de calor y la instalación de suelo radiante. En el estudio de iluminación se analizan las necesidades de alumbrado de la vivienda utilizando luminarias led. Por último se evalúa la viabilidad económica que supone sustituir una instalación de caldera de gasoil por la instalación geotérmica dimensionada y la viabilidad de sustituir luminarias incandescentes por luminarias led. ABSTRACT The purpose of this paper is the design of a single family home with the lowest nonrenewable energy input, so optimum comfort living conditions for the occupants during the whole year can be reached. In order to design the house, both passive solar energy input and the use of thermal insulators will be taken into account. A geothermal installation for the heating, cooling and Domestic Hot Water (DHC) supply will be measured. In this measuring, the boreholls, the heat pump equipment and the radiant floor heating installation are included. In the study of illumination of the house, the lighting needs using LED luminaires are analised. Finally, the economic viability when replacing the installation of a diesel boiler for the measured geothermal installation is assessed, as well as the viability when replacing incandescent luminaires for LED luminaires
Resumo:
En esta tesis se investiga la interacción entre un fluido viscoso y un cuerpo sólido en presencia de una superficie libre. El problema se expresa teóricamente poniendo especial atención a los aspectos de conservación de energía y de la interacción del fluido con el cuerpo. El problema se considera 2D y monofásico, y un desarrollo matemático permite una descomposición de los términos disipativos en términos relacionados con la superficie libre y términos relacionados con la enstrofía. El modelo numérico utilizado en la tesis se basa en el método sin malla Smoothed Particle Hydrodynamics (SPH). De manera análoga a lo que se hace a nivel continuo, las propiedades de conservación se estudian en la tesis con el sistema discreto de partículas. Se tratan también las condiciones de contorno de un cuerpo que se mueve en un flujo viscoso, implementadas con el método ghost-fluid. Se ha desarrollado un algoritmo explícito de interacción fluido / cuerpo. Se han documentado algunos casos de modo detallado con el objetivo de comprobar la capacidad del modelo para reproducir correctamente la disipación de energía y el movimiento del cuerpo. En particular se ha investigado la atenuación de una onda estacionaria, comparando la simulación numérica con predicciones teóricas. Se han realizado otras pruebas para monitorizar la disipación de energía para flujos más violentos que implican la fragmentación de la superficie libre. La cantidad de energía disipada con los diferentes términos se ha evaluado en los casos estudiados con el modelo numérico. Se han realizado otras pruebas numéricas para verificar la técnica de modelización de la interacción fluido / cuerpo, concretamente las fuerzas ejercidas por las olas en cuerpos con formas simples, y el equilibrio de un cuerpo flotante con una forma compleja. Una vez que el modelo numérico ha sido validado, se han realizado simulaciones numéricas para obtener una comprensión más completa de la física implicada en casos (casi) realistas sobre los había aspectos que no se conocían suficientemente. En primer lugar se ha estudiado el el flujo alrededor de un cilindro bajo la superficie libre. El estudio se ha realizado con un número de Reynolds moderado, para un rango de inmersiones del cilindro y números de Froude. La solución numérica permite una investigación de los patrones complejos que se producen. La estela del cilindro interactúa con la superficie libre. Se han identificado algunos inestabilidades características. El segundo estudio se ha realizado sobre el problema de sloshing, tanto experimentalmente como numéricamente. El análisis se restringe a aguas poco profundas y con oscilación horizontal, pero se ha estudiado un gran número de condiciones, lo que lleva a una comprensión bastante completa de los sistemas de onda involucradas. La última parte de la tesis trata también sobre un problema de sloshing pero esta vez el tanque está oscilando con rotación y hay acoplamiento con un sistema mecánico. El sistema se llama pendulum-TLD (Tuned Liquid Damper - con líquido amortiguador). Este tipo de sistema se utiliza normalmente para la amortiguación de las estructuras civiles. El análisis se ha realizado analíticamente, numéricamente y experimentalmente utilizando líquidos con viscosidades diferentes, centrándose en características no lineales y mecanismos de disipación. ABSTRA C T The subject of the present thesis is the interaction between a viscous fluid and a solid body in the presence of a free surface. The problem is expressed first theoretically with a particular focus on the energy conservation and the fluid-body interaction. The problem is considered 2D and monophasic, and some mathematical development allows for a decomposition of the energy dissipation into terms related to the Free Surface and others related to the enstrophy. The numerical model used on the thesis is based on Smoothed Particle Hydrodynamics (SPH): a computational method that works by dividing the fluid into particles. Analogously to what is done at continuum level, the conservation properties are studied on the discrete system of particles. Additionally the boundary conditions for a moving body in a viscous flow are treated and discussed using the ghost-fluid method. An explicit algorithm for handling fluid-body coupling is also developed. Following these theoretical developments on the numerical model, some test cases are devised in order to test the ability of the model to correctly reproduce the energy dissipation and the motion of the body. The attenuation of a standing wave is used to compare what is numerically simulated to what is theoretically predicted. Further tests are done in order to monitor the energy dissipation in case of more violent flows involving the fragmentation of the free-surface. The amount of energy dissipated with the different terms is assessed with the numerical model. Other numerical tests are performed in order to test the fluid/body interaction method: forces exerted by waves on simple shapes, and equilibrium of a floating body with a complex shape. Once the numerical model has been validated, numerical tests are performed in order to get a more complete understanding of the physics involved in (almost) realistic cases. First a study is performed on the flow passing a cylinder under the free surface. The study is performed at moderate Reynolds numbers, for various cylinder submergences, and various Froude numbers. The capacity of the numerical solver allows for an investigation of the complex patterns which occur. The wake from the cylinder interacts with the free surface, and some characteristical flow mechanisms are identified. The second study is done on the sloshing problem, both experimentally and numerically. The analysis is restrained to shallow water and horizontal excitation, but a large number of conditions are studied, leading to quite a complete understanding of the wave systems involved. The last part of the thesis still involves a sloshing problem but this time the tank is rolling and there is coupling with a mechanical system. The system is named pendulum-TLD (Tuned Liquid Damper). This kind of system is normally used for damping of civil structures. The analysis is then performed analytically, numerically and experimentally for using liquids with different viscosities, focusing on non-linear features and dissipation mechanisms.
Resumo:
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.
Resumo:
Recent research has shown large differences between the expected and the actual energy consumption in buildings. The differences have been attributed partially, to the assumptions made during the design phase of buildings when simulation methods are employed. More accurate occupancy profiles on building operation could help to carry out more precise building performance calculations. This study focuses on the post-occupancy evaluation of two apartments, one renovated and one non renovated, in Madrid within the same building complex. The aim of this paper is to present an application of the mixed-methods methodology (Creswell, 2007) to assess thermal comfort and occupancy practices used in the case studies, and to discuss the shortcomings and opportunities associated with it. The mixed-methods methodology offers strategies for integrating qualitative and quantitative methods to investigate complex phenomena. This approach is expected to contribute to the growing knowledge of occupants behaviour and building performance by explaining the differences observed between energy consumption and thermal comfort in relation to people’s saving and comfort practices and the related experiences, preferences and values.
Resumo:
Los accidentes con implicación de autocares en los que se producen vuelcos ponen de manifiesto la especial agresividad de los mismos, como lo confirman las estadísticas. Como medida para mejorar la seguridad de los Vehículos de Grandes Dimensiones para el Transporte de Pasajeros (V.G.D.T.P.) frente a vuelco fue aprobado por las Naciones Unidas el Reglamento Nº 66 de Ginebra. Este reglamento establece los requisitos mínimos que las estructuras de los vehículos de grandes dimensiones deben cumplir con respecto a vuelco. El reglamento 66 ha supuesto un paso adelante muy importante en relación con la seguridad de los autocares, puesto que especifica por primera vez requerimientos estructurales a este tipo de vehículos, y en general ha supuesto una mejora del vehículo . Por otro lado, a consecuencia de la obligatoriedad de instalación de cinturones de seguridad, existe una unión entre pasajeros y vehículo, pero como no se trata de una unión rígida, hay que contemplar el porcentaje de la masa de los ocupantes que influye en la absorción de energía de la estructura. Además la retención de los ocupantes con cinturones de seguridad influye en la energía a absorber por la estructura del vehículo en dos aspectos, por un lado aumenta la masa del vehículo y en el otro se incrementa la altura el centro de gravedad. Esta situación a conducido a elaborar por parte de las Naciones Unidas la revisión 01 del Reglamento 66, en el que se considera que el 50 % de la masa total de los pasajeros posee una unión rígida con la estructura del vehículo, y por lo tanto debe ser tenida en cuenta si el vehículo posee sistemas de retención. En la situación actual, con limitaciones de peso del vehículo y peso por eje, los elementos de confort, seguridad y espacio para maleteros contribuyen a aumentar el peso del vehículo. Esto unido a la dificultad de introducción de cambios radicales en la concepción actual de fabricación de este tipo de vehículos por suponer unas pérdidas importantes para los fabricantes existentes, tanto en su conocimiento del producto como en su metodología de proceso, conlleva la necesidad cada vez más agobiante de analizar y evaluar otras alternativas estructurales que sin suponer grandes revoluciones a los productos actualmente en fabricación los complementen permitiendo adaptarse a los nuevos requerimientos en seguridad. Recientes desarrollos en la relación costo-beneficio de los procesos para la producción de materiales celulares metálicos de baja densidad, tales como las espumas metálicas, los posiciona como una alternativa de especial interés para la aplicación como elementos de absorción de energía para reforzar estructuras. El relleno con espumas metálicas puede ser más eficiente en términos de optimización de peso comparado con el aumento de espesor de los perfiles estructurales, dado que la absorción de energía se produce en una fracción relativamente pequeña de los perfiles, en las denominadas rótulas plásticas. La aplicación de espumas de relleno metálicas en estructuras de vehículos se está empezando a emplear en determinadas zonas de los vehículos de turismo, siendo totalmente novedosa cualquier intento de aplicación en estructuras de autobuses y autocares. Conforme a lo expuesto, y con el objeto de resolver estos problemas, se ha elaborado el presente trabajo de tesis doctoral, cuyos objetivos son: -Desarrollar un modelo matemático, que permita simular el ensayo de vuelco, considerando la influencia de los ocupantes retenidos con cinturones de seguridad para evaluar su influencia en la absorción de energía de la estructura. -Validar el modelo matemático de vuelco de la estructura mediante ensayos de secciones representativas de la estructura del vehículo y mediante el ensayo de un vehículo completo. -Realizar un estudio de las propiedades de las espumas metálicas que permitan incorporarlas como elemento de absorción de energía en el relleno de componentes de la superestructura de autobuses y autocares. -Desarrollar un modelo matemático para evaluar el aporte del relleno de espuma metálica en la absorción de energía ante solicitaciones por flexión estática y dinámica en componentes de la superestructura de autobuses o autocares. -Realizar un programa de ensayos a flexión estáticos y dinámicos para validar el modelo matemático del aporte del relleno de espuma metálica sobre componentes de la superestructura de autobuses y autocares. . -Incorporar al modelo matemático de vuelco de la estructura, los resultados obtenidos sobre componentes con relleno de espuma metálica, para evaluar el aporte en la absorción de energía. -Validar el modelo de vuelco de la estructura del autobús o autocar con relleno de espuma metálica, mediante ensayos de secciones de carrocería. ABSTRACT Accidents involving buses in which rollovers occur reveal the special aggressiveness thereof, as the statistics prove. As a measure to improve the safety of large vehicles for the transport of passengers to rollover, Regulation 66 of Geneva was approved by the United Nations. This regulation establishes the minimum requirements that structures of large vehicles must comply with respect to rollovers. The regulation 66 has been a major step forward in relation to the safety of coaches, since it specifies structural requirements to such vehicles and has been an improvement for the vehicle. In turn, as a result of compulsory installation of safety belts, there is contact between passengers and vehicle, but as it is not a rigid connection we must contemplate the percentage of the mass of the occupants that impacts on the energy absorption of the structure. Thus, the passengers’ restraining modifies the energy to absorb by the vehicle in two different aspects: On the one hand, it increases the vehicle weight and on the other the height of the center of gravity. This circumstance has taken the United Nations to elaborate Revision 01 of Regulation 66, in which it is considered that the 50 percent of passengers’ mass has a rigid joint together with the vehicle structure and, therefore, the passengers’ mass mentioned above should be highly considered if the vehicle has seat belts. In the present situation, in which limitations in vehicle weight and weight in axles are stricter, elements of comfort, safety and space for baggage are contributing to increase the weight of the vehicle. This coupled with the difficulty of introducing radical changes in the current conception of manufacturing such vehicles pose significant losses for existing manufacturers, both in product knowledge and process methodology, entails the overwhelming need to analyze and evaluate other structural alternatives without assuming relevant modifications on the products manufactured currently allowing them to adapt to the new safety requirements. Recent developments in cost-benefit processes for the production of metallic foams of low density, such as metal foams, place them as an alternative of special interest to be used as energy absorbers to strengthen structures. The filling with metal foams can be more efficient in terms of weight optimization compared with increasing thickness of the structural beams, since the energy absorption occurs in a relatively small fraction of the beams, called plastic hinges. The application of metal filling foams in vehicle structures is beginning to be used in certain areas of passenger cars, being an innovative opportunity in structures for application in buses and coaches. According to the mentioned before, and in order to come forward with a solution, this doctoral thesis has been prepared and its objectives are: - Develop a mathematical model to simulate the rollover test, considering the influence of the occupants held with seat belts to assess their influence on energy absorption structure. - Validate the mathematical model of the structure rollover by testing representative sections of the vehicle structure and by testing a complete vehicle. - Conduct a study of the properties of metal foams as possible incorporation of energy absorbing element in the filler component of the superstructure of buses and coaches. - Elaborate a mathematical model to assess the contribution of the metal foam filling in absorbing energy for static and dynamic bending loads on the components of buses or coaches superstructure. - Conduct a static and dynamic bending test program to validate the mathematical model of contribution of metal foam filling on components of the superstructure of buses and coaches bending. - To incorporate into the mathematical model of structure rollover, the results obtained on components filled with metal foam, to evaluate the contribution to the energy absorption. - Validate the rollover model structure of the bus or coach filled with metal foam through tests of bay sections. The objectives in this thesis have been achieved successfully. The contribution calculation model with metal foam filling in the vehicle structure has revealed that the filling with metal foam is more efficient than increasing thickness of the beams, as demonstrated in the experimental validation of bay sections.
Resumo:
La presente tesis analiza la mejora de la resistencia estructural ante vuelco de autocares enfocando dos vías de actuación: análisis y propuestas de requisitos reglamentarios a nivel europeo y la generación de herramientas que ayuden al diseño y a la verificación de estos requisitos. Los requisitos reglamentarios de resistencia estructural a vuelco contemplan la superestructura de los vehículos pero no para los asientos y sistemas de retención. La influencia de los pasajeros retenidos es superior a la incluida en reglamentación (Reg. 66.01) debiendo considerarse unida al vehículo un porcentaje de la masa de los pasajeros del 91% para cinturón de tres puntos y del 52% para cinturón subabdominal frente al 50% reglamentario para todos los casos. Se ha determinado la cinemática y dinámica del vuelco normativo en sus diferentes fases, formulando las energías en las fases iniciales (hasta el impacto contra el suelo) y determinando la fase final de deformación a través del análisis secuencial de ensayos de módulos reales. Se han determinado los esfuerzos para los asientos que se dividen en dos fases diferenciadas temporalmente: una primera debida a la deformación estructural y una segunda debida al esfuerzo del pasajero retenido que se produce en sentido opuesto (con una deceleración del pasajero en torno a 3.3 g). Se ha caracterizado a través de ensayos cuasi.estáticos el comportamiento de perfiles a flexión y de las uniones estructurales de las principales zonas del vehículo (piso, ventana y techo) verificándose la validez del comportamiento plástico teórico Kecman.García para perfiles de hasta 4 mm de espesor y caracterizando la resistencia y rigidez en la zona elástica de las uniones en función del tipo de refuerzo, materiales y perfiles (análisis de más de 180 probetas). Se ha definido un método de ensayo cuasi.estático para asientos ante esfuerzos de vuelco, ensayándose 19 butacas y determinándose que son resistentes (salvo las uniones a vehículo con pinzas), que son capaces de absorber hasta más de un 17% de la energía absorbida, aunque algunos necesitan optimización para llegar a contribuir en el mecanismo de deformación estructural. Se han generado modelos simplificados para introducir en los modelos barra.rótula plástica: un modelo combinado unión+rótula plástica (que incluye la zona de rigidez determinada en función del tipo de unión) para la superestructura y un modelo simplificado de muelles no.lineales para los asientos. Igualmente se ha generado la metodología de diseño a través de ensayos virtuales con modelos de detalle de elementos finitos tanto de las uniones como de los asientos. Se ha propuesto una metodología de diseño basada en obtener el “mecanismo óptimo de deformación estructural” (elevando la zona de deformación lateral a nivel de ventana y en pilar o en costilla en techo). Para ello se abren dos vías: diseño de la superestructura (selección de perfiles y generación de uniones resistentes) o combinación con asientos (que en lugar de solo resistir las cargas pueden llegar a modificar el mecanismo de deformación). Se ha propuesto una metodología de verificación alternativa al vuelco de vehículo completo que contempla el cálculo cuasi.estático con modelos simplificados barra.rótula plástica más el ensayo de una sección representativa con asientos y utillajes antropomórficos retenidos que permite validar el diseño de las uniones, determinar el porcentaje de energía que debe absorberse por deformación estructural (factor C) y verificar el propio asiento como sistema de retención. ABSTRACT This research analyzes the improvement of the structural strength of buses and coaches under rollover from two perspectives: regulatory requirements at European level and generation of tools that will help to the design and to the verification of requirements. European Regulations about rollover structural strength includes requirements for the superstructure of the vehicles but not about seats, anchorages and restraint systems. The influence of the retained passengers is higher than the one included currently in the Regulations (Reg. 66.01), being needed to consider a 91% of the passenger mass as rigidly joint to the vehicle (for 3 points’ belt, a 52% for 2 points’ belt) instead of the 50% included in the Regulation. Kinematic and dynamic of the normative rollover has been determined from testing of different sections, formulating the energies of the first phases (up to the first impact with the ground) and determining the last deformation phase through sequential analysis of movements and deformations. The efforts due to rollover over the seats have been established, being divided in two different temporal phases: a first one due to the structural deformation of the vehicle and a second one due to the effort of the restrained passenger being this second one in opposite sense (with a passenger deceleration around 3.3 g). From quasi.static testing, the behavior of the structural tubes under flexural loads, including the principal joints in the vehicle (floor, window and roof), the validity of the theoretical plastic behavior according Kecman.García theories have been verified up to 4 mm of thickness. Strength of the joints as well as the stiffness of the elastic zone has been determined in function of main parameters: type of reinforcement, materials and section of the tubes (more than 180 test specimens). It has been defined a quasi.static testing methodology to characterize the seats and restrain system behavior under rollover, testing 19 double seats and concluding that they are resistant (excepting clamping joints), that they can absorb more than a 17 of the absorbed energy, and that some of them need optimization to contribute in the structural deformation mechanism. It has been generated simplified MEF models, to analyze in a beam.plastic hinge model: a combined model joint+plastic hinge (including the stiffness depending on the type of joint) for the superstructure and a simplified model with non.lineal springs to represent the seats. It has been detailed methodologies for detailed design of joints and seats from virtual testing (MEF models). A design methodology based in the “optimized structural deformation mechanism” (increasing the height of deformation of the lateral up to window level) is proposed. Two possibilities are analyzed: design of the superstructure based on the selection of profiles and design of strength joints (were seats only resist the efforts and contribute in the energy absorption) or combination structure.seats, were seats contributes in the deformation mechanism. An alternative methodology to the rollover of a vehicle that includes the quasi.static calculation with simplified models “beam.joint+plastic hinge” plus the testing of a representative section of the vehicle including seats and anthropomorphic ballast restrained by the safety belts is presented. The test of the section allows validate the design of the joints, determine the percentage of energy to be absorbed by structural deformation (factor C) and verify the seat as a retention system.
Resumo:
Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.
Resumo:
Radon gas (Rn) is a natural radioactive gas present in some soils and able to penetrate buildings through the building envelope in contact with the soil. Radon can accumulate within buildings and consequently be inhaled by their occupants. Because it is a radioactive gas, its disintegration process produces alpha particles that, in contact with the lung epithelia, can produce alterations potentially giving rise to cancer. Many international organizations related to health protection, such as WHO, confirm this causality. One way to avoid the accumulation of radon in buildings is to use the building envelope as a radon barrier. The extent to which concrete provides such a barrier is described by its radon diffusion coefficient (DRn), a parameter closely related to porosity (ɛ) and tortuosity factor (τ). The measurement of the radon diffusion coefficient presents challenges, due to the absence of standard procedures, the requirement to establish adequate airtightness in testing apparatus (referred to here as the diffusion cell), and due to the fact that measurement has to be carried out in an environment certified for use of radon calibrated sources. In addition to this calibrated radon sources are costly. The measurement of the diffusion coefficient for non-radioactive gas is less complex, but nevertheless retains a degree of difficulty due to the need to provide reliably airtight apparatus for all tests. Other parameters that can characterize and describe the process of gas transport through concrete include the permeability coefficient (K) and the electrical resistivity (ρe), both of which can be measured relatively easily with standardized procedure. The use of these parameters would simplify the characterization of concrete behaviour as a radon barrier. Although earlier studies exist, describing correlation among these parameters, there is, as has been observed in the literature, little common ground between the various research efforts. For precisely this reason, prior to any attempt to measure radon diffusion, it was deemed necessary to carry out further research in this area, as a foundation to the current work, to explore potential relationships among the following parameters: porosity-tortuosity, oxygen diffusion coefficient, permeability coefficient and resistivity. Permeability coefficient measurement (m2) presents a more straightforward challenge than diffusion coefficient measurement. Some authors identify a relationship between both coefficients, including Gaber (1988), who proposes: k= a•Dn Equation 1 Where: a=A/(8ΠD020), A = sample cross-section, D020 = diffusion coefficient in air (m2/s). Other studies (Klink et al. 1999, Gaber and Schlattner 1997, Gräf and Grube et al. 1986), experimentally relate both coefficients of different types of concrete confirming that this relationship exists, as represented by the simplified expression: k≈Dn Equation 2 In each particular study a different value for n was established, varying from 1.3 to 2.5, but this requires determination of a value for n in a more general way because these proposed models cannot estimate diffusion coefficient. If diffusion coefficient has to be measured to be able to establish n, these relationships are not interesting. The measurement of electric resistivity is easier than diffusion coefficient measurement. Correlation between the parameters can be established via Einstein´s law that relates movement of electrical charges to media conductivity according to the expression: D_e=k/ρ Equation 3 Where: De = diffusion coefficient (cm2/s), K = constant, ρ = electric resistivity (Ω•cm). The tortuosity factor is used to represent the uneven geometry of concrete pores, which are described as being not straight, but tortuous. This factor was first introduced in the literature to relate global porosity with fluid transport in a porous media, and can be formulated in a number of different ways. For example, it can take the form of equation 4 (Mason y Malinauskas), which combines molecular and Knudsen diffusion using the tortuosity factor: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Equation 4 Where: r = medium radius obtained from MIP (µm), M = gas molecular mass, R = ideal gases constant, T = temperature (K), D0 = coefficient diffusion in the air (m2/s). Few studies provide any insight as to how to obtain the tortuosity factor. The work of Andrade (2012) is exceptional in this sense, as it outlines how the tortuosity factor can be deduced from pore size distribution (from MIP) from the equation: ∅_th=∅_0•ε^(-τ). Equation 5 Where: Øth = threshold diameter (µm), Ø0 = minimum diameter (µm), ɛ = global porosity, τ = tortuosity factor. Alternatively, the following equation may be used to obtain the tortuosity factor: DO2=D0*ɛτ Equation 6 Where: DO2 = oxygen diffusion coefficient obtained experimentally (m2/s), DO20 = oxygen diffusion coefficient in the air (m2/s). This equation has been inferred from Archie´s law ρ_e=〖a•ρ〗_0•ɛ^(-m) and from the Einstein law mentioned above, using the values of oxygen diffusion coefficient obtained experimentally. The principal objective of the current study was to establish correlations between the different parameters that characterize gas transport through concrete. The achievement of this goal will facilitate the assessment of the useful life of concrete, as well as open the door to the pro-active planning for the use of concrete as a radon barrier. Two further objectives were formulated within the current study: 1.- To develop a method for measurement of gas coefficient diffusion in concrete. 2.- To model an analytic estimation of radon diffusion coefficient from parameters related to concrete porosity and tortuosity factor. In order to assess the possible correlations, parameters have been measured using the standardized procedures or purpose-built in the laboratory for the study of equations 1, 2 y 3. To measure the gas diffusion coefficient, a diffusion cell was designed and manufactured, with the design evolving over several cycles of research, leading ultimately to a unit that is reliably air tight. The analytic estimation of the radon diffusion coefficient DRn in concrete is based on concrete global porosity (ɛ), whose values may be experimentally obtained from a mercury intrusion porosimetry test (MIP), and from its tortuosity factor (τ), derived using the relations expressed in equations 5 y 6. The conclusions of the study are: Several models based on regressions, for concrete with a relative humidity of 50%, have been proposed to obtain the diffusion coefficient following the equations K=Dn, K=a*Dn y D=n/ρe. The final of these three relations is the one with the determination coefficient closest to a value of 1: D=(19,997*LNɛ+59,354)/ρe Equation 7 The values of the obtained oxygen diffusion coefficient adjust quite well to those experimentally measured. The proposed method for the measurement of the gas coefficient diffusion is considered to be adequate. The values obtained for the oxygen diffusion coefficient are within the range of those proposed by the literature (10-7 a 10-8 m2/s), and are consistent with the other studied parameters. Tortuosity factors obtained using pore distribution and the expression Ø=Ø0*ɛ-τ are inferior to those from resistivity ρ=ρ0*ɛ-τ. The closest relationship to it is the one with porosity of pore diameter 1 µm (τ=2,07), being 7,21% inferior. Tortuosity factors obtained from the expression DO2=D0*ɛτ are similar to those from resistivity: for global tortuosity τ=2,26 and for the rest of porosities τ=0,7. Estimated radon diffusion coefficients are within the range of those consulted in literature (10-8 a 10-10 m2/s).ABSTRACT El gas radón (Rn) es un gas natural radioactivo presente en algunos terrenos que puede penetrar en los edificios a través de los cerramientos en contacto con el mismo. En los espacios interiores se puede acumular y ser inhalado por las personas. Al ser un gas radioactivo, en su proceso de desintegración emite partículas alfa que, al entrar en contacto con el epitelio pulmonar, pueden producir alteraciones del mismo causando cáncer. Muchos organismos internacionales relacionados con la protección de la salud, como es la OMS, confirman esta causalidad. Una de las formas de evitar que el radón penetre en los edificios es utilizando las propiedades de barrera frente al radón de su propia envolvente en contacto con el terreno. La principal característica del hormigón que confiere la propiedad de barrera frente al radón cuando conforma esta envolvente es su permeabilidad que se puede caracterizar mediante su coeficiente de difusión (DRn). El coeficiente de difusión de un gas en el hormigón es un parámetro que está muy relacionado con su porosidad (ɛ) y su tortuosidad (τ). La medida del coeficiente de difusión del radón resulta bastante complicada debido a que el procedimiento no está normalizado, a que es necesario asegurar una estanquidad a la celda de medida de la difusión y a que la medida tiene que ser realizada en un laboratorio cualificado para el uso de fuentes de radón calibradas, que además son muy caras. La medida del coeficiente de difusión de gases no radioactivos es menos compleja, pero sigue teniendo un alto grado de dificultad puesto que tampoco está normalizada, y se sigue teniendo el problema de lograr una estanqueidad adecuada de la celda de difusión. Otros parámetros que pueden caracterizar el proceso son el coeficiente de permeabilidad (K) y la resistividad eléctrica (ρe), que son más fáciles de determinar mediante ensayos que sí están normalizados. El uso de estos parámetros facilitaría la caracterización del hormigón como barrera frente al radón, pero aunque existen algunos estudios que proponen correlaciones entre estos parámetros, en general existe divergencias entre los investigadores, como se ha podido comprobar en la revisión bibliográfica realizada. Por ello, antes de tratar de medir la difusión del radón se ha considerado necesario realizar más estudios que puedan clarificar las posibles relaciones entre los parámetros: porosidad-tortuosidad, coeficiente de difusión del oxígeno, coeficiente de permeabilidad y resistividad. La medida del coeficiente de permeabilidad (m2) es más sencilla que el de difusión. Hay autores que relacionan el coeficiente de permeabilidad con el de difusión. Gaber (1988) propone la siguiente relación: k= a•Dn Ecuación 1 En donde: a=A/(8ΠD020), A = sección de la muestra, D020 = coeficiente de difusión en el aire (m2/s). Otros estudios (Klink et al. 1999, Gaber y Schlattner 1997, Gräf y Grube et al. 1986) relacionan de forma experimental los coeficientes de difusión de radón y de permeabilidad de distintos hormigones confirmando que existe una relación entre ambos parámetros, utilizando la expresión simplificada: k≈Dn Ecuación 2 En cada estudio concreto se han encontrado distintos valores para n que van desde 1,3 a 2,5 lo que lleva a la necesidad de determinar n porque no hay métodos que eviten la determinación del coeficiente de difusión. Si se mide la difusión ya deja de ser de interés la medida indirecta a través de la permeabilidad. La medida de la resistividad eléctrica es muchísimo más sencilla que la de la difusión. La relación entre ambos parámetros se puede establecer a través de una de las leyes de Einstein que relaciona el movimiento de cargas eléctricas con la conductividad del medio según la siguiente expresión: D_e=k/ρ_e Ecuación 3 En donde: De = coeficiente de difusión (cm2/s), K = constante, ρe = resistividad eléctrica (Ω•cm). El factor de tortuosidad es un factor de forma que representa la irregular geometría de los poros del hormigón, al no ser rectos sino tener una forma tortuosa. Este factor se introduce en la literatura para relacionar la porosidad total con el transporte de un fluido en un medio poroso y se puede formular de distintas formas. Por ejemplo se destaca la ecuación 4 (Mason y Malinauskas) que combina la difusión molecular y la de Knudsen utilizando el factor de tortuosidad: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Ecuación 4 En donde: r = radio medio obtenido del MIP (µm), M = peso molecular del gas, R = constante de los gases ideales, T = temperatura (K), D0 = coeficiente de difusión de un gas en el aire (m2/s). No hay muchos estudios que proporcionen una forma de obtener este factor de tortuosidad. Destaca el estudio de Andrade (2012) en el que deduce el factor de tortuosidad de la distribución del tamaño de poros (curva de porosidad por intrusión de mercurio) a partir de la ecuación: ∅_th=∅_0•ε^(-τ) Ecuación 5 En donde: Øth = diámetro umbral (µm), Ø0 = diámetro mínimo (µm), ɛ = porosidad global, τ = factor de tortuosidad. Por otro lado, se podría utilizar también para obtener el factor de tortuosidad la relación: DO2=D0*-τ Ecuación 6 En donde: DO2 = coeficiente de difusión del oxígeno experimental (m2/s), DO20 = coeficiente de difusión del oxígeno en el aire (m2/s). Esta ecuación está inferida de la ley de Archie ρ_e=〖a•ρ〗_0•ɛ^(-m) y la de Einstein mencionada anteriormente, utilizando valores del coeficiente de difusión del oxígeno DO2 obtenidos experimentalmente. El objetivo fundamental de la tesis es encontrar correlaciones entre los distintos parámetros que caracterizan el transporte de gases a través del hormigón. La consecución de este objetivo facilitará la evaluación de la vida útil del hormigón así como otras posibilidades, como la evaluación del hormigón como elemento que pueda ser utilizado en la construcción de nuevos edificios como barrera frente al gas radón presente en el terreno. Se plantean también los siguientes objetivos parciales en la tesis: 1.- Elaborar una metodología para la medida del coeficiente de difusión de los gases en el hormigón. 2.- Plantear una estimación analítica del coeficiente de difusión del radón a partir de parámetros relacionados con su porosidad y su factor de tortuosidad. Para el estudio de las correlaciones posibles, se han medido los parámetros con los procedimientos normalizados o puestos a punto en el propio Instituto, y se han estudiado las reflejadas en las ecuaciones 1, 2 y 3. Para la medida del coeficiente de difusión de gases se ha fabricado una celda que ha exigido una gran variedad de detalles experimentales con el fin de hacerla estanca. Para la estimación analítica del coeficiente de difusión del radón DRn en el hormigón se ha partido de su porosidad global (ɛ), que se obtiene experimentalmente del ensayo de porosimetría por intrusión de mercurio (MIP), y de su factor de tortuosidad (τ), que se ha obtenido a partir de las relaciones reflejadas en las ecuaciones 5 y 6. Las principales conclusiones obtenidas son las siguientes: Se proponen modelos basados en regresiones, para un acondicionamiento con humedad relativa de 50%, para obtener el coeficiente de difusión del oxígeno según las relaciones: K=Dn, K=a*Dn y D=n/ρe. La propuesta para esta última relación es la que tiene un mejor ajuste con R2=0,999: D=(19,997*LNɛ+59,354)/ρe Ecuación 7 Los valores del coeficiente de difusión del oxígeno así estimados se ajustan a los obtenidos experimentalmente. Se considera adecuado el método propuesto de medida del coeficiente de difusión para gases. Los resultados obtenidos para el coeficiente de difusión del oxígeno se encuentran dentro del rango de los consultados en la literatura (10-7 a 10-8 m2/s) y son coherentes con el resto de parámetros estudiados. Los resultados de los factores de tortuosidad obtenidos de la relación Ø=Ø0*ɛ-τ son inferiores a la de la resistividad (ρ=ρ0*ɛ-τ). La relación que más se ajusta a ésta, siendo un 7,21% inferior, es la de la porosidad correspondiente al diámetro 1 µm con τ=2,07. Los resultados de los factores de tortuosidad obtenidos de la relación DO2=D0*ɛτ son similares a la de la resistividad: para la porosidad global τ=2,26 y para el resto de porosidades τ=0,7. Los coeficientes de difusión de radón estimados mediante estos factores de tortuosidad están dentro del rango de los consultados en la literatura (10-8 a 10-10 m2/s).
Resumo:
Esta es la búsqueda de respuestas a esa duda constante: De dónde venimos y que hemos ido dejando por el camino. ¿Está todo claro en este recorrido o hemos actuado por acumulación de errores heredados de procesos anteriores? Es la investigación a través del descubrimiento de nuestro pasado, de nuestros orígenes en materia de seguridad de protección contra incendios, y sobre todo de ejecución de una arquitectura pensada para ser recorrida con mayor seguridad y ser evacuada en un tiempo razonable. El trabajo investiga, a nivel nacional, la evolución de la sociedad y sus efectos sobre la manera de interpretar el problema de la seguridad contra incendios en los edificios. El interés fundamentalmente es poner en claro todos aquellos aspectos que afectan a la evacuación de las personas. Para ello se han estudiado los principales hitos de actuación, las preocupaciones principales surgidas en cada momento y las soluciones adoptadas. Se ha comprobado su aplicación o su demora hasta que se ha producido el siguiente gran suceso que ha motivado una nueva revisión de los procedimientos de diseño y control. En primer lugar, tratando de relacionar los incendios fundamentales que han influido en nuestra forma de abordar el problema en distintos momentos de la historia de España. En segundo lugar, haciendo un recorrido sobre la figura del arquitecto y su participación en los medios de control y legislación sobre la manera de intervenir en el servicio de incendios o de resolver los edificios en materia de protección contra incendios o evacuación de sus ocupantes. En definitiva, descubriendo los escritos de algunos especialistas, fundamentales para entender nuestra manera de abordar el problema de la protección en los edificios, a lo largo de la historia. Se ha revisado como se han producido los siniestros más importantes en teatros y otros locales públicos .Analizando la forma en que los arquitectos implicados han tratado de resolver las posibles deficiencias ante el riesgo. Se trata de la tipología edificatoria donde, por primera vez, surge la preocupación por adoptar medidas y procedimientos de seguridad en caso de incendio. Resultan locales con una importante siniestralidad, donde se desarrolla la principal actividad lúdica del momento, y que por el importante número de personas que albergan, son fuente de preocupación entre el público y las autoridades. Otras cuestiones en un tema tan amplio, que quedan simplemente esbozadas en este trabajo de investigación, son los procedimientos de los sistemas de extinción, la estructura organizativa de la ciudad, las primeras sociedades de seguros de incendios, la aparición de patentes a partir del desarrollo industrial del siglo XIX. Todo ello, con el hilo conductor de la reglamentación que se ha ido elaborando al respecto. Al principio, sobre espectáculos públicos, acotando el punto de partida en la materia de nuestra reglamentación. Anticipando sistemas constructivos y datos dimensionales de la evacuación. Llegados a mediados del siglo XX, abordando otros usos. Haciendo seguimiento de la modernización de los procesos edificatorios y la reglamentación sectorial. Recabando información de las organizaciones profesionales que comienzan a reclamar una coordinación nacional de los sistemas preventivos y que desemboca en el Proyecto de Reglamento de prevención contra el fuego que nunca será publicado. Toda esta etapa, plagada de documentos de carácter voluntario u obligatorio, local y nacional, van definiendo los criterios dimensionales con los que debe resolverse los elementos arquitectónicos susceptibles de servir para la evacuación. Se trata de una etapa intensa en documentación, cambiante, sujeta a los criterios que establecen los países del entorno más avanzados en la materia. Las dos últimas décadas del siglo, acotadas por la transición política y varios siniestros de graves consecuencias, definen el proceso normativo que culmina con el código técnico de la edificación que hoy conocemos. Es un periodo de aprendizaje y asimilación del capítulo de la seguridad, donde los métodos son variados. Donde la intencionalidad última es trasladar un sistema prescriptivo a un modelo prestacional propio de la madurez en el análisis del tema y en las corrientes de los países del entorno. ABSTRACT This is the search for answers to that constant question: Where do we come from and what have left along the way? Has everything been clear on this journey, or have we acted as a result of a collection of errors learned from prior processes? This has been research through exploration of our past, of our origins regarding fire protection safety, and, above all, of the endeavour to utilize architecture aimed at offering the highest level of safety and evacuation in a reasonable time. This project has researched society’s change nationwide and its effects on how to interpret the difficulty of fire protection safety in buildings. Its focus has fundamentally been to clarify those aspects that affect the evacuation of people. To this end, the main milestones of action, the principal concerns that have arisen at each step, and the solutions taken have all been studied. A check was performed on their application; or their delay until a significant event occurred that prompted a new revision of design and control procedures. Firstly, this was done by attempting to connect the main fires that have influenced how we handle the problem at different times in Spain’s history. Secondly, an examination was done on the figure of the architect and his participation in the means of control and legislation on how to intercede in fire services, or how the architect finds solutions for buildings in terms of fire protection, or the evacuation of their occupants. In short, the written works of certain specialists, who are essential to our understanding of how to deal with the problem of protection in buildings, were explored throughout history. A study was done on the most significant disasters in theatres and other public establishments. This was done by analysing the way the architects involved have aimed to solve possible points liable to risk. It is a classification of building where, for the first time, the concern arose to adopt safety measures and procedures in the event of fires. Public establishments with considerable accident rates emerged. Here the main entertainment activities of the time took place. These spaces were a source of worry among the public and authorities due to the high number of persons they accommodated. Other issues in such an extensive subject, which are only outlined in this research study, are procedures in extinguishing systems, the organizational structure of cities, the first fire insurance companies, and the appearance of patents after the industrial development of the 19th century. All of these aspects are joined by the common thread of regulations that have been created in this matter. At the beginning, these regulations were for public shows, thus defining the starting point for our regulations. This was done in anticipation of structural systems and size data of evacuations. With the arrival of the mid-20th century, different uses were addressed. A modernization of construction processes and the industry regulations were tracked. Information was gathered from professional organizations that began to demand a national coordination of prevention systems which led to the Regulation Project on fire prevention which will never be published. Throughout this stage, replete with voluntary and compulsory documents, both on the local and national level, the dimensional criteria to be used in the resolution of architectural elements open to use in evacuation were defined. This was a period that was filled with documentation, change, and subject to the criteria that the most advanced countries in the field established in this regard. The final two decades of the century, marked by political transition and several accidents with grave consequences, defined the regulation process that culminated with the building technical code known today. This was a period of learning and understanding in the chapter of safety, where the methods are varied. In this chapter, the ultimate goal is to insert a prescriptive-based standard into a performance-based code suitable for cultivated experience in analysis of the subject and the tendencies in countries dealing with this field.
Resumo:
El buen dimensionado de los elementos de evacuación de los edificios es fundamental para conseguir una evacuación segura de los ocupantes en un evento accidental de fuego. Para ello es necesario conocer previamente la asignación de personas que previsiblemente los van a utilizar en caso de emergencia. En el presente trabajo de investigación, se desarrolla un método de cálculo que permite abarcar todos los escenarios posibles de bloqueos en caso de incendio permitiendo así conocer de antemano las distribuciones de personas en las vías de evacuación de manera conservadora. Dicho método de cálculo es aplicable tanto la justificación del cumplimiento de CTE DB-SI3, como en cualquier reglamentación internacional de protección contra incendios. ABSTRACT A good dimensioning of egress and elements of evacuation in buildings is essential for a safe evacuation of occupants in event of accidental fire. This requires prior knowledge of allocated number of people that will use them in an emergency. In this research, a calculation method is developed to cover every possible scenario of unavailable exit in case of fire, thereby allowing to know in advance the distributions of people on the escape routes and conservatively. This calculation method is applicable to both the confirmation of compliance with Spanish regulations, as in any international fire code.
Resumo:
Os meios de comunicação que atuam em perspectiva regional alcançaram, inegavelmente, maior visibilidade no contexto da globalização. Em se tratando de emissoras regionais de televisão há, em grande parte dos casos, a afiliação a uma rede nacional. Este estudo é sobre uma emissora regional, a TV TEM Bauru, integrante do grupo TV TEM de afiliadas à Rede Globo de Televisão. O trabalho se fundamenta em conceitos de região, espaço, território e local, mídia local e televisão regional. Tem como objetivo compreender as configurações desta TV, no que se refere às suas origens, vínculos corporativos e as condições de ordem tecnológica, de sustentação comercial e de cobertura jornalística, especificamente, a produção e circulação da informação jornalística gerada e difundida nas cidades da região de cobertura do grupo TV TEM. Visa também caracterizar a relação entre o espaço total de programação ocupado pela cabeça-de-rede em nível nacional e aquele destinado a programas jornalísticos produzidos localmente e, dentro destes, o tempo destinado à veiculação de anúncios publicitários em escala regional. Opta-se pelo método de abordagem dialético, dada a complexidade e as contradições do fenômeno investigado. Trata-se de uma investigação qualitativa do tipo estudo de caso, mas que incorpora dados quantitativos, e se baseia em observação e estudo de conteúdo jornalístico da emissora bauruense, além de pesquisa bibliográfica e documental. A principal conclusão é que o espaço regional é limitado por constrangimentos de ordem comercial, por restrições impostas pela cabeça de rede e, ainda, por um projeto de regionalização que não contempla significativamente as nuanças regionais.(AU)
Resumo:
Os meios de comunicação que atuam em perspectiva regional alcançaram, inegavelmente, maior visibilidade no contexto da globalização. Em se tratando de emissoras regionais de televisão há, em grande parte dos casos, a afiliação a uma rede nacional. Este estudo é sobre uma emissora regional, a TV TEM Bauru, integrante do grupo TV TEM de afiliadas à Rede Globo de Televisão. O trabalho se fundamenta em conceitos de região, espaço, território e local, mídia local e televisão regional. Tem como objetivo compreender as configurações desta TV, no que se refere às suas origens, vínculos corporativos e as condições de ordem tecnológica, de sustentação comercial e de cobertura jornalística, especificamente, a produção e circulação da informação jornalística gerada e difundida nas cidades da região de cobertura do grupo TV TEM. Visa também caracterizar a relação entre o espaço total de programação ocupado pela cabeça-de-rede em nível nacional e aquele destinado a programas jornalísticos produzidos localmente e, dentro destes, o tempo destinado à veiculação de anúncios publicitários em escala regional. Opta-se pelo método de abordagem dialético, dada a complexidade e as contradições do fenômeno investigado. Trata-se de uma investigação qualitativa do tipo estudo de caso, mas que incorpora dados quantitativos, e se baseia em observação e estudo de conteúdo jornalístico da emissora bauruense, além de pesquisa bibliográfica e documental. A principal conclusão é que o espaço regional é limitado por constrangimentos de ordem comercial, por restrições impostas pela cabeça de rede e, ainda, por um projeto de regionalização que não contempla significativamente as nuanças regionais.(AU)
Resumo:
Duocarmycin A (Duo) normally alkylates adenine N3 at the 3′ end of A+T-rich sequences in DNA. The efficient adenine alkylation by Duo is achieved by its monomeric binding to the DNA minor groove. The addition of another minor groove binder, distamycin A (Dist), dramatically modulates the site of DNA alkylation by Duo, and the alkylation switches preferentially to G residues in G+C-rich sequences. HPLC product analysis using oligonucleotides revealed a highly efficient G–N3 alkylation via the cooperative binding of a heterodimer between Duo and Dist to the minor groove. The three-dimensional structure of the ternary alkylated complex of Duo/Dist/d(CAGGTGGT)·d(ACCACCTG) has been determined by nuclear Overhauser effect (NOE)-restrained refinement using 750 MHz two-dimensional NOE spectroscopy data. The refined NMR structure fully explains the sequence requirement of such modulated alkylations. This is the first demonstration of Duo DNA alkylation through cooperative binding with another structurally different natural product, and it suggests a promising new way to alter or modify the DNA alkylation selectivity in a predictable manner.
Resumo:
We used integrin αLβ2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the αL I domain and β2 I-like domain inhibit adhesion of wild-type αLβ2 to intercellular adhesion molecule-1. However, with αLβ2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, αLβ2 containing a locked open I domain was completely resistant to inhibition by mAbs to the β2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type αLβ2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn2+, as measured with mAb m24, which we map here to the β2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn2+-induced exposure of the KIM127 epitope in the β2 stalk region. Furthermore, locked open I domains, in αLβ2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg2+ and Mn2+. These results suggest that Mn2+ activates αLβ2 by binding to a site other than the I domain, most likely the I-like domain of β2.
Resumo:
By detailed NMR analysis of a human telomere repeating unit, d(CCCTAA), we have found that three distinct tetramers, each of which consists of four symmetric single-strands, slowly exchange in a slightly acidic solution. Our new finding is a novel i-motif topology (T-form) where T4 is intercalated between C1 and C2 of the other duplex. The other two tetramers have a topology where C1 is intercalated between C2 and C3 of the other parallel duplex, resulting in the non-stacking T4 residues (R-form), and a topology where C1 is stacked between C3 and T4 of the other duplex (S-form). From the NMR denaturation profile, the R-form is the most stable of the three structures in the temperature range of 15–50°C, the S-form the second and the T-form the least stable. The thermodynamic parameters indicate that the T-form is the most enthalpically driven and entropically opposed, and its population is increased with decreasing temperature. The T-form structure determined by restrained molecular dynamics calculation suggests that inter-strand van der Waals contacts in the narrow grooves should contribute to the enthalpic stabilization of the T-form.