508 resultados para Resonator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form.
In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction
between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements.
We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed
through time-gated spin-like measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wird die Herstellung von miniaturisierten NIR-Spektrometern auf Basis von Fabry-Pérot (FP) Filter Arrays behandelt. Bisher ist die kostengünstige Strukturierung von homogenen und vertikal erweiterten Kavitäten für NIR FP-Filter mittels Nanoimprint Technologie noch nicht verfügbar, weil die Qualität der Schichten des Prägematerials unzureichend ist und die geringe Mobilität der Prägematerialien nicht ausreicht, um die vertikal erweiterten Kavitäten zu füllen. Diese Arbeit konzentriert sich auf die Reduzierung des technischen Aufwands zur Herstellung von homogenen und vertikal erweiterten Kavitäten. Zur Strukturierung der Kavitäten wird ein großflächiger substratkonformer UV-Nanoimprint Prozess (SCIL - Substrate Conformal Imprint Lithoghaphy) verwendet, der auf einem Hybridstempel basiert und Vorteile von harten und weichen Stempeln vereint. Um die genannten Limitierungen zu beseitigen, werden alternative Designs der Kavitäten untersucht und ein neues Prägematerial eingesetzt. Drei Designlösungen zur Herstellung von homogenen und erweiterten Kavitäten werden untersucht und verglichen: (i) Das Aufbringen des Prägematerials mittel mehrfacher Rotationsbeschichtung, um eine höhere Schichtdicke des Prägematerials vor dem Prägeprozess zu erzeugen, (ii) die Verwendung einer hybriden Kavität bestehend aus einer strukturierten Schicht des Prägematerials eingebettet zwischen zwei Siliziumoxidschichten, um die Schichtdicke der organischen Kavität zu erweitern und (iii) die Optimierung des Prägeprozesses durch Verwendung eines neuen Prägematerials. Die mit diesen drei Ansätzen hergestellten FP-Filter Arrays zeigen, hohe Transmissionen (beste Transmission > 90%) und kleine Linienbreiten (Halbwertsbreiten <5 nm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among various optical sensing schemes, infrared spectroscopy is a powerful tool for detecting and determining the composition of complex organic samples since vibrational finger prints of all biomolecules and organic species are located in this window. This spectroscopic technique is simple, reliable, fast, non-destructive, cost-effective while having low sensitivity. Use of metallic nanoparticles in association with a good IR transparent sensing substrate, is one of the promising solutions to enhance the sensitivity. Chalcogenide glasses are promising substrate material because of their extended optical transmission window starting from the visible to the far infrared range up to 20 μm, high refractive index usually between 2 and 3 and high optical nonlinearity, which make them good candidates as IR sensors and optical ultrafast nonlinear devices. These glasses are favorable sensor materials for the infrared spectral range because of their high IR transparency to allow for low optical loss at wavelengths corresponding to the characteristic optical absorption bands of organic molecules, high refractive index for tight confinement of optical energy within the resonator structure, processibility into thin film form, chemical compatibility for adhesion of silver nano particles and thin films and resistance to the chemical environment to be sensed. Molecules adsorbed to silver island structures shows enhanced IR absorption spectra and the extent of enhancement is determined by many factors such as the size, density and morphology of silver structures, optical and dielectric properties of the substrate material etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Validität des Sensorkonzeptes aus dem Patent von Prof. H. Hillmer wird unter Verwendung einer gasförmigen Testsubstanz gezeigt. Zu diesem Zweck wird ein bestehender Messaufbau durch zahlreiche Verbesserungen optimiert. Die optischen Eigenschaften der verwendeten Komponenten und der resultierenden modifizierten Aufbauten werden dargelegt. Die bisherigen faserbasierter Messaufbauten werden zu einem symmetrischen Messaufbau mit verbesserter spektraler Auflösung und vereinfachter Handhabung erweitert. Die Vorlaufzeiten, die zuvor ein maßgebliches Problem darstellte, wurde deutlich reduziert. Die spektralen Eigenschaften des überarbeiteten Lasersystems werden detailliert erfasst und dargestellt. Der asymmetrische Messaufbau erreicht minimale Halbwertsbreiten von 0,04 ± 0,02 nm, bei einem Seitenmodenunterdrückungsverhältnis von 26,9 ± 0,9 dB und weist einen Schwellstrom von 361,55 mA auf. Der symmetrische Aufbau erreicht Halbwertsbreiten von 0,04 ± 0,02 nm, ein Seitenmodenunterdrückungsverhältnis von 49,45 ± 0,05 nm und weist einen Schwellstrom von 261,25 mA auf. Durch die Erweiterung des Systems zum symmetrischen Messaufbau wird es möglich, die Positionen der Wellenlängen frei zu wählen, wohingegen im asymmetrischen Messaufbau die Wellenlänge der äußeren Kavität immer näher am Maximum der Verstärkungskurve des SOA gewählt werden muss. Mit beiden System werden Messungen mit unterschiedlichen Stoffmengen von Acetylen mit unterschiedlichen Abständen zwischen den Laserlinien durchgeführt. Obwohl eine vergleichsweise schwache Absorptionslinie von Acetylen für die Messungen gewählt wurde, zeigen beide Systeme eine instantane Änderung der Intensitäten der Laserlinien bei einer Änderung der Stoffmenge im Resonator. Die Laserlinie, die von der Absorption von Acetylen betroffen ist, nimmt ab, wohingegen die Intensität der zweiten Laserlinie zunimmt. Es wird erstmals gezeigt, dass eine Leistungsübertragung zwischen den Laserlinien stattfindet. Die Reaktion beider Systeme ist stark vom Abstand der Laserlinien zueinander abhängig, wodurch eine genaue Bestimmung der Sensitivität nicht durchgeführt wird.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the study of Bull's eye antenna designs, a type of leaky wave antenna (LWA), operating in the 60 GHz band. This band emerged as a new standard for specific terrestrial and space applications because the radio spectrumbecomes more congested up to the millimetre-wave band, starting at 30 GHz. Built on existing Bull's eye antenna designs, novel structures were simulated, fabricated and measured, so as to provide more exibility in the implementation of wireless solutions at this frequency. Firstly, the study of a 60 GHz Bull's eye antenna for straightforward integration onto a CubeSat is presented. An investigation of the design is carried out, from the description of the radiation mechanism supported by simulation results, to the radiation pattern measurement of a prototype which provides a gain of 19.1 dBi at boresight. Another design, based on a modified feed structure, uses a microstrip to waveguide transition to provide easier and inexpensive integration of a Bull's eye antenna onto a planar circuit. Secondly, the design of Bull's eye antennas capable of creating beam deflection and multi-beam is presented. In particular, a detail study of the deflection mechanism is proposed, followed by the demonstration of a Bull's eye antenna generating two separate beams at ±16° away from the boresight. In addition, a novel mechanically steerable Bull's eye antenna, based on the division of the corrugated area in paired sectors is presented. A prototype was fabricated and measured. It generated double beams at ±8° and ±15° from the boresight, and a single boresight beam. Thirdly, a Bull's eye antenna capable of generating two simultaneous orbital angular momentum (OAM) modes l = 3 is proposed. The design is based on a circular travelling wave resonator and would allow channel capacity increase through OAM multiplexing. An improved design based on two stacked OAM Bull's eye antennas capable of producing four orthogonal OAM modes l = (±3,±13) simultaneously is presented. A novel receiving scheme based on discretely sampled partial aperture receivers (DSPAR) is then introduced. This solution could provide a lower windage and a lower cost of implementation than current whole or partial continuous aperture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.

In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.

Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.

Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active vibration control using time delay for a cantilever beam is developed in this paper. The equation of motion of the system is developed using the discrete standard formulation, and the discrete quadratic function is used to design the controller. The original contribution in this paper is using a genetic algorithm to determine the optimal time delay feedback for active vibration control of a cantilever beam. Simulations of the beam demonstrated that the genetic algorithm correctly identified the time delay which produced the quickest attenuation of unwanted vibrations for both mode one and mode two. In terms of frequency response, the optimal time delay for both modes reduced the resonant amplitude. In a mixed mode situation, the simulation demonstrated that an optimal time delay could be identified.