854 resultados para Representation. Rationalities. Race. Recognition. Culture. Classification.Ontology. Fetish.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban regions present some of the most challenging areas for the remote sensing community. Many different types of land cover have similar spectral responses, making them difficult to distinguish from one another. Traditional per-pixel classification techniques suffer particularly badly because they only use these spectral properties to determine a class, and no other properties of the image, such as context. This project presents the results of the classification of a deeply urban area of Dudley, West Midlands, using 4 methods: Supervised Maximum Likelihood, SMAP, ECHO and Unsupervised Maximum Likelihood. An accuracy assessment method is then developed to allow a fair representation of each procedure and a direct comparison between them. Subsequently, a classification procedure is developed that makes use of the context in the image, though a per-polygon classification. The imagery is broken up into a series of polygons extracted from the Marr-Hildreth zero-crossing edge detector. These polygons are then refined using a region-growing algorithm, and then classified according to the mean class of the fine polygons. The imagery produced by this technique is shown to be of better quality and of a higher accuracy than that of other conventional methods. Further refinements are suggested and examined to improve the aesthetic appearance of the imagery. Finally a comparison with the results produced from a previous study of the James Bridge catchment, in Darleston, West Midlands, is made, showing that the Polygon classified ATM imagery performs significantly better than the Maximum Likelihood classified videography used in the initial study, despite the presence of geometric correction errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an investigation into the application of methods of uncertain reasoning to the biological classification of river water quality. Existing biological methods for reporting river water quality are critically evaluated, and the adoption of a discrete biological classification scheme advocated. Reasoning methods for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi are cited as primary numerical schemes. Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity of benthic response to changes in water quality leads to the adoption of a sensor model of data interpretation, in which a reference set of taxa provide probabilistic support for the biological classes. The significance of sensor states, including that of absence, is shown. Novel techniques of directly eliciting the required uncertainty measures are presented. Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the sensors. The performance of these automatic classifiers was compared with the expert's own discrete classification of sampled sites. Variations of sensor data weighting, combination order and belief representation were examined for their effect on classification performance. The behaviour of the calculi under evidential conflict and alternative combination rules was investigated. Small variations in evidential weight and the inclusion of evidence from sensors absent from a sample improved classification performance of Bayesian belief and support for singleton hypotheses. For simple support, inclusion of absent evidence decreased classification rate. The performance of Dempster-Shafer classification using consonant belief functions was comparable to Bayesian and singleton belief. Recommendations are made for further work in biological classification using uncertain reasoning methods, including the combination of multiple-expert opinion, the use of Bayesian networks, and the integration of classification software within a decision support system for water quality assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research sets out to compare the values in British and German political discourse, especially the discourse of social policy, and to analyse their relationship to political culture through an analysis of the values of health care reform. The work proceeds from the hypothesis that the known differences in political culture between the two countries will be reflected in the values of political discourse, and takes a comparison of two major recent legislative debates on health care reform as a case study. The starting point in the first chapter is a brief comparative survey of the post-war political cultures of the two countries, including a brief account of the historical background to their development and an overview of explanatory theoretical models. From this are developed the expected contrasts in values in accordance with the hypothesis. The second chapter explains the basis for selecting the corpus texts and the contextual information which needs to be recorded to make a comparative analysis, including the context and content of the reform proposals which comprise the case study. It examines any contextual factors which may need to be taken into account in the analysis. The third and fourth chapters explain the analytical method, which is centred on the use of definition-based taxonomies of value items and value appeal methods to identify, on a sentence-by-sentence basis, the value items in the corpus texts and the methods used to make appeals to those value items. The third chapter is concerned with the classification and analysis of values, the fourth with the classification and analysis of value appeal methods. The fifth chapter will present and explain the results of the analysis, and the sixth will summarize the conclusions and make suggestions for further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an innovative sensing approach allowing capture, discrimination, and classification of transients automatically in gait. A walking platform is described, which offers an alternative design to that of standard force plates with advantages that include mechanical simplicity and less restriction on dimensions. The scope of the work is to investigate as an experiment the sensitivity of the distributive tactile sensing method with the potential to address flexibility on gait assessment, including patient targeting and the extension to a variety of ambulatory applications. Using infrared sensors to measure plate deflection, gait patterns are compared with stored templates using a pattern recognition algorithm. This information is input into a neural network to classify normal and affected walking events, with a classification accuracy of just under 90 per cent achieved. The system developed has potential applications in gait analysis and rehabilitation, whereby it can be used as a tool for early diagnosis of walking disorders or to determine changes between pre- and post-operative gait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Irish have been relentlessly racialized in their diaspora settings, yet little historical work engages with “race to understand Irish history on the island of Ireland. This article provides an interpretation of two key periods of Irish history—the second half of the sixteenth century and the period since 1996—through the lens of racialization. I argue that Ireland's history is exceptional in its capacity to reveal key elements of the history of the development of race as an idea and a set of practices. The English colonization of Ireland was underpinned by a form of racism reliant on linking bodies to unchanging hierarchically stacked cultures, without reference to physical differences. For example, the putative unproductiveness of the Gaelic Irish not only placed them at a lower level of civilization than the industrious English but it also authorizes increasingly draconian ways of dealing with the Irish populace. The period since 1996, during which Ireland has become a country of immigration, illustrates how racism has undergone a transformation into the object of official state policies to eliminate it. Yet it flourishes as part of a globalized set of power relations that has brought immigrants to the developing Irish economy. In response to immigration the state simultaneously exerts neoliberal controls and reduces pathways to citizenship through residence while passing antiracism legislation. Today, the indigenous nomadic Travellers and asylum seekers are the ones that are seen as pathologically unproductive. Irish history thus demonstrates that race is not only about color but also very much about culture. It also illustrates notable elements of the West's journey from racism without race to racism without racists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a type of 2-tier convolutional neural network model for learning distributed paragraph representations for a special task (e.g. paragraph or short document level sentiment analysis and text topic categorization). We decompose the paragraph semantics into 3 cascaded constitutes: word representation, sentence composition and document composition. Specifically, we learn distributed word representations by a continuous bag-of-words model from a large unstructured text corpus. Then, using these word representations as pre-trained vectors, distributed task specific sentence representations are learned from a sentence level corpus with task-specific labels by the first tier of our model. Using these sentence representations as distributed paragraph representation vectors, distributed paragraph representations are learned from a paragraph-level corpus by the second tier of our model. It is evaluated on DBpedia ontology classification dataset and Amazon review dataset. Empirical results show the effectiveness of our proposed learning model for generating distributed paragraph representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing data is routinely used in ecology to investigate the relationship between landscape pattern as characterised by land use and land cover maps, and ecological processes. Multiple factors related to the representation of geographic phenomenon have been shown to affect characterisation of landscape pattern resulting in spatial uncertainty. This study investigated the effect of the interaction between landscape spatial pattern and geospatial processing methods statistically; unlike most papers which consider the effect of each factor in isolation only. This is important since data used to calculate landscape metrics typically undergo a series of data abstraction processing tasks and are rarely performed in isolation. The geospatial processing methods tested were the aggregation method and the choice of pixel size used to aggregate data. These were compared to two components of landscape pattern, spatial heterogeneity and the proportion of landcover class area. The interactions and their effect on the final landcover map were described using landscape metrics to measure landscape pattern and classification accuracy (response variables). All landscape metrics and classification accuracy were shown to be affected by both landscape pattern and by processing methods. Large variability in the response of those variables and interactions between the explanatory variables were observed. However, even though interactions occurred, this only affected the magnitude of the difference in landscape metric values. Thus, provided that the same processing methods are used, landscapes should retain their ranking when their landscape metrics are compared. For example, highly fragmented landscapes will always have larger values for the landscape metric "number of patches" than less fragmented landscapes. But the magnitude of difference between the landscapes may change and therefore absolute values of landscape metrics may need to be interpreted with caution. The explanatory variables which had the largest effects were spatial heterogeneity and pixel size. These explanatory variables tended to result in large main effects and large interactions. The high variability in the response variables and the interaction of the explanatory variables indicate it would be difficult to make generalisations about the impact of processing on landscape pattern as only two processing methods were tested and it is likely that untested processing methods will potentially result in even greater spatial uncertainty. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Bipolar disorder (BD) is one of the leading causes of disability worldwide. Patients are further disadvantaged by delays in accurate diagnosis ranging between 5 and 10 years. We applied Gaussian process classifiers (GPCs) to structural magnetic resonance imaging (sMRI) data to evaluate the feasibility of using pattern recognition techniques for the diagnostic classification of patients with BD. Method - GPCs were applied to gray (GM) and white matter (WM) sMRI data derived from two independent samples of patients with BD (cohort 1: n = 26; cohort 2: n = 14). Within each cohort patients were matched on age, sex and IQ to an equal number of healthy controls. Results - The diagnostic accuracy of the GPC for GM was 73% in cohort 1 and 72% in cohort 2; the sensitivity and specificity of the GM classification were respectively 69% and 77% in cohort 1 and 64% and 99% in cohort 2. The diagnostic accuracy of the GPC for WM was 69% in cohort 1 and 78% in cohort 2; the sensitivity and specificity of the WM classification were both 69% in cohort 1 and 71% and 86% respectively in cohort 2. In both samples, GM and WM clusters discriminating between patients and controls were localized within cortical and subcortical structures implicated in BD. Conclusions - Our results demonstrate the predictive value of neuroanatomical data in discriminating patients with BD from healthy individuals. The overlap between discriminative networks and regions implicated in the pathophysiology of BD supports the biological plausibility of the classifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article characterizes key weaknesses in the ability of current digital libraries to support scholarly inquiry, and as a way to address these, proposes computational services grounded in semiformal models of the naturalistic argumentation commonly found in research literatures. It is argued that a design priority is to balance formal expressiveness with usability, making it critical to coevolve the modeling scheme with appropriate user interfaces for argument construction and analysis. We specify the requirements for an argument modeling scheme for use by untrained researchers and describe the resulting ontology, contrasting it with other domain modeling and semantic web approaches, before discussing passive and intelligent user interfaces designed to support analysts in the construction, navigation, and analysis of scholarly argument structures in a Web-based environment. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 17–47, 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. RESULTS: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective clinical decision making depends upon identifying possible outcomes for a patient, selecting relevant cues, and processing the cues to arrive at accurate judgements of each outcome's probability of occurrence. These activities can be considered as classification tasks. This paper describes a new model of psychological classification that explains how people use cues to determine class or outcome likelihoods. It proposes that clinicians respond to conditional probabilities of outcomes given cues and that these probabilities compete with each other for influence on classification. The model explains why people appear to respond to base rates inappropriately, thereby overestimating the occurrence of rare categories, and a clinical example is provided for predicting suicide risk. The model makes an effective representation for expert clinical judgements and its psychological validity enables it to generate explanations in a form that is comprehensible to clinicians. It is a strong candidate for incorporation within a decision support system for mental-health risk assessment, where it can link with statistical and pattern recognition tools applied to a database of patients. The symbiotic combination of empirical evidence and clinical expertise can provide an important web-based resource for risk assessment, including multi-disciplinary education and training. © 2002 Informa UK Ltd All rights reserved.