925 resultados para Renin-angiotensin-aldosterone system inhibitors
Resumo:
Four corrosion inhibitors namely sodium nitrite, sodium monofluorophosphate, ethanolamine and an alkanolamine-based mixture were studied by immersing mild steel bars for 42 days in model electrolytes of varied pH and chloride concentration which were intended to simulate the pore solution phase present within carbonated and/or chloride-contaminated concrete. Site trials were carried out on sodium monofluorophosphate and the alkanolamine-based inhibitor to study their depth of penetration into concrete. The influence of various carbonating atmospheres on the pore solution chemistry and microstructure of hydrated cement paste was investigated. Physical realkalisation of carbonated cement paste and a calcium nitrite-based corrosion rehabilitation system for chloride-contaminated cement paste were investigated by monitoring ionic transport within the pore solution phase of laboratory specimens. The main findings were as follows: 1,Sodium nitrite, sodium monofluorophosphate, ethanolamine and the alkanolamine-based mixture all behaved as passivating anodic inhibitors of steel corrosion in air-saturated aqueous solutions of varied pH and chloride concentration. 2,Sodium monofluorophosphate failed to penetrate significantly into partially carbonated site concrete when applied as recommended by the supplier. Phosphate and fluoride penetrated 5mm into partially carbonated site concrete treated with sodium monofluorophosphate. 3,The ethanolamine component of the alkanolamine-based inhibitor was found to have penetrated significant depths into partially carbonated site concrete. 4,Carbonating hydrated cement paste over saturated solutions of sodium nitrite resulted in significant concentrations of nitrite in the pore solution of the carbonated paste. Saturated solutions of sodium chloride, ammonium nitrate, magnesium nitrate and sodium dichromate were investigated and identified as alternatives for controlling the relative humidity of the carbonating environment. 5,Hardened carbonated cement paste can by physically realkalised to a limited extent due to the diffusion of hydroxyl ions under saturated conditions. A substantial proportion of the hydroxyl ions that diffused into the carbonated cement paste however, became bound into the cement matrix. Hydroxyl ion concentrations remained below 5mmol/l within the pore solution of the realkalised cement paste. 6, Nitrite ions penetrated significant distances by diffusion within the pore solution of saturated uncarbonated hydrated cement paste.
Resumo:
Central venous catheters (CVCs) are being utilized with increasing frequency in intensive care and general medical wards. In spite of the extensive experience gained in their application, CVCs are related to the long-term risks of catheter sheath formation, infection, and thrombosis (of the catheter or vessel itself) during catheterization. Such CVC-related-complications are associated with increased morbidity, mortality, duration of hospitalization, and medical care cost [1]. The present study incorporates a novel group of Factor XIIIa (FXIIIa, plasma transglutaminase) inhibitors into a lubricious silicone elastomer in order to generate an optimized drug delivery system whereby a secondary sustained drug release profile occurs following an initial burst release for catheters and other medical devices. We propose that the incorporation of FXIIIa inhibitors into catheters, stents, and other medical implant devices would reduce the incidence of catheter sheath formation, thrombotic occlusion, and associated staphylococcal infection. This technique could be used as a local delivery system for extended release with an immediate onset of action for other poorly aqueous soluble compounds. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Angiotensin I and II have been shown to directly induce protein degradation in skeletal muscle through an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. This investigation determines the role of the nuclear transcription factor nuclear factor-κB (NF-κB) in this process. Using murine myotubes as a surrogate model system both angiotensin I and II were found to induce activation of protein kinase C (PKC), with a parabolic dose-response curve similar to the induction of total protein degradation. Activation of PKC was required for the induction of proteasome expression, since calphostin C, a highly specific inhibitor of PKC, attenuated both the increase in total protein degradation and in proteasome expression and functional activity increased by angiotensin II. PKC is known to activate I-κB kinase (IKK), which is responsible for the phosphorylation and subsequent degradation of I-κB. Both angiotensin I and II induced an early decrease in cytoplasmic I-κB levels followed by nuclear accumulation of NF-κB. Using an NF-κB luciferase construct this was shown to increase transcriptional activation of NF-κB regulated genes. Maximal luciferase expression was seen at the same concentrations of angiotensin I/II as those inducing protein degradation. Total protein degradation induced by both angiotensin I and II was attenuated by resveratrol, which prevented nuclear accumulation of NF-κB, confirming that activation of NF-κB was responsible for the increased protein degradation. These results suggest that induction of proteasome expression by angiotensin I/II involves a signalling pathway involving PKC and NF-κB. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Angiotensin II (Ang II) has been implicated in muscle protein loss in cachexia. To determine whether the Ang I/II system directly inhibits protein synthesis in muscle their effect has been monitored in vitro using murine myotubes as a surrogate model system. Ang I inhibited protein synthesis by 40-50% over the concentration range of 0.05-2.5 μM within 30 min of addition, and the inhibition remained relatively constant over 24 h. The effect was attenuated by co-incubation with the angiotensin converting enzyme inhibitor imidaprilat (50 μM) suggesting that inhibition of protein synthesis was due to the formation of Ang II. Ang II also inhibited protein synthesis by 40-50% over the concentration range of 0.1-5 μM, and the inhibition also remained relatively constant between 30 min and 24 h after addition. The effect was attenuated by insulin-like growth factor-1 (IGF-1) (25-100 ng/ml). Thus, Ang I/II have the ability to induce muscle atrophy through inhibition of protein synthesis. © 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The ability of angiotensin I (Ang I) and II (Ang II) to induce directly protein degradation in skeletal muscle has been studied in murine myotubes. Angiotensin I stimulated protein degradation with a parabolic dose-response curve and with a maximal effect between 0.05 and 0.1 μM. The effect was attenuated by coincubation with the angiotensin-converting enzyme (ACE) inhibitor imidaprilat, suggesting that angiotensin I stimulated protein degradation through conversion to Ang II. Angiotensin II also stimulated protein breakdown with a similar dose-response curve, and with a maximal effect between 1 and 2.5 μM. Total protein degradation, induced by both Ang I and Ang II, was attenuated by the proteasome inhibitors lactacystin (5 μM) and MG132 (10 μM), suggesting that the effect was mediated through upregulation of the ubiquitin-proteasome proteolytic pathway. Both Ang I and Ang II stimulated an increased proteasome 'chymotrypsin-like' enzyme activity as well as an increase in protein expression of 20S proteasome α-subunits, the 19S subunits MSSI and p42, at the same concentrations as those inducing protein degradation. The effect of Ang I was attenuated by imidaprilat, confirming that it arose from conversion to Ang II. These results suggest that Ang II stimulates protein degradation in myotubes through induction of the ubiquitin-proteasome pathway. Protein degradation induced by Ang II was inhibited by insulin-like growth factor and by the polyunsaturated fatty acid, eicosapentaenoic acid. These results suggest that Ang II has the potential to cause muscle atrophy through an increase in protein degradation. The highly lipophilic ACE inhibitor imidapril (Vitor™) (30 mg kg-1) attenuated the development of weight loss in mice bearing the MAC16 tumour, suggesting that Ang II may play a role in the development of cachexia in this model. © 2005 Cancer Research.
Resumo:
Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.
Resumo:
Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states. © 2014 Elsevier Inc. All rights reserved.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.
Resumo:
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.
Resumo:
Background: To validate STOPPFrail, a list of explicit criteria for potentially inappropriate medications (PIMs) in frailer older adults with limited life expectancy. A Delphi consensus survey of an expert panel (n = 17) comprising specialists in geriatric medicine, clinical pharmacology, palliative care, psychiatry of old age, clinical pharmacy and general practice.
Methods: STOPPFrail criteria was initially created by the authors based on clinical
experience and appraisal of the available literature. Criteria were organised according to physiological system. Each criterion was accompanied by an explanation. Panellists ranked their agreement with each criterion on a 5-point Likert scale and invited to provide written feedback. Criteria with a median Likert response of 4/5 (agree/strongly agree) and a 25th centile of ≥4 were included in the final criteria.
Results: Three Delphi rounds were required. All panellists completed all rounds. Thirty criteria were proposed for inclusion; 26 were accepted. No new criteria were added. The first two criteria suggest deprescribing medications with no indication or where compliance is poor. The remaining 24 criteria include lipid-lowering therapies, alpha-blockers for hypertension, anti-platelets, neuroleptics, proton pump inhibitors, H-2 receptor antagonists, anti-spasmodics, theophylline, leukotriene antagonists, calcium supplements, bone anti-resorptive therapy, selective oestrogen receptor modulators, non-steroidal antiinflammatories, corticosteroids, 5-alpha reductase inhibitors, alpha-1 selective blockers, muscarinic antagonists, oral diabetic agents, ACE-inhibitors, angiotensin receptor blockers, systemic oestrogens, multivitamins, nutritional supplements and prophylactic antibiotics. Anticoagulants and anti-depressants were excluded. Despite incorporation of panellists’ suggestions, memantine and acetyl-cholinesterase inhibitors remained inconclusive.
Conclusion: STOPPFrail comprises 26 criteria, which have been judged by broad consensus, to be potentially inappropriate in frailer older patients with limited life expectancy. STOPPFrail may assist in deprescribing medications in these patients.
Resumo:
The urokinase plasminogen activator (uPA) system (uPAS) comprises the uPA, its cell membrane receptor (uPAR) and two specific inhibitors, the plasminogen activator inhibitor 1 (PAI-1) and 2 (PAI-2). The uPA converts the plasminogen in the serine protease plasmin, involved in a number of physiopathological processes requiring basement membrane (BM) or extracellular matrix (ECM) remodelling, including tumor progression and metastasis. The tumor-promoting role of PAS is not limited to the degradation of ECM and BM required for local diffusion and spread to distant sites of malignant cells, but widens to tumor cell proliferation, adhesion and migration, intravasation, growth at the metastatic site and neoangiogenesis. The relevance of uPAS in cancer progression has been confirmed by several studies which documented an increased expression of uPA, uPAR and PAI-1 in different human malignancies, and a positive correlation between the levels of one or more of them and a poor prognosis. For these reasons, the uPAS components have aroused considerable interest as suitable targets for anticancer therapy, and several pharmacological approaches aimed at inhibiting the uPA and/or uPAR expression or function in preclinical and clinical settings have been described. In the present manuscript, we will first glance at uPAS biological functions in human cancer progression and its clinical significance in terms of prognosis and therapy. We will then review the main findings regarding expression and function of uPAS components in thyroid cancer tissues along with the experimental and clinical evidence suggesting its potential value as molecular prognostic marker and therapeutic target in thyroid cancer patients.
Resumo:
Although tyrosine kinase inhibitors (TKIs) such as imatinib have transformed chronic myelogenous leukemia (CML) into a chronic condition, these therapies are not curative in the majority of cases. Most patients must continue TKI therapy indefinitely, a requirement that is both expensive and that compromises a patient's quality of life. While TKIs are known to reduce leukemic cells' proliferative capacity and to induce apoptosis, their effects on leukemic stem cells, the immune system, and the microenvironment are not fully understood. A more complete understanding of their global therapeutic effects would help us to identify any limitations of TKI monotherapy and to address these issues through novel combination therapies. Mathematical models are a complementary tool to experimental and clinical data that can provide valuable insights into the underlying mechanisms of TKI therapy. Previous modeling efforts have focused on CML patients who show biphasic and triphasic exponential declines in BCR-ABL ratio during therapy. However, our patient data indicates that many patients treated with TKIs show fluctuations in BCR-ABL ratio yet are able to achieve durable remissions. To investigate these fluctuations, we construct a mathematical model that integrates CML with a patient's autologous immune response to the disease. In our model, we define an immune window, which is an intermediate range of leukemic concentrations that lead to an effective immune response against CML. While small leukemic concentrations provide insufficient stimulus, large leukemic concentrations actively suppress a patient's immune system, thus limiting it's ability to respond. Our patient data and modeling results suggest that at diagnosis, a patient's high leukemic concentration is able to suppress their immune system. TKI therapy drives the leukemic population into the immune window, allowing the patient's immune cells to expand and eventually mount an efficient response against the residual CML. This response drives the leukemic population below the immune window, causing the immune population to contract and allowing the leukemia to partially recover. The leukemia eventually reenters the immune window, thus stimulating a sequence of weaker immune responses as the two populations approach equilibrium. We hypothesize that a patient's autologous immune response to CML may explain the fluctuations in BCR-ABL ratio that are regularly seen during TKI therapy. These fluctuations may serve as a signature of a patient's individual immune response to CML. By applying our modeling framework to patient data, we are able to construct an immune profile that can then be used to propose patient-specific combination therapies aimed at further reducing a patient's leukemic burden. Our characterization of a patient's anti-leukemia immune response may be especially valuable in the study of drug resistance, treatment cessation, and combination therapy.
Resumo:
The Picornaviridae family consists of positive-strand RNA viruses that are the causative agents of a variety of diseases in humans and animals. Few drugs targeting picornaviruses are available, making the discovery of new antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. The antiviral effect of these compounds is not likely related to their known cellular targets because other inhibitors targeting the same pathways did not inhibit viral replication. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited the formation of a functional replication complex, while E5(1) and E7(2) affected replication after the replication complex had formed. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Poliovirus resistant to E7(2) had a single mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target either PI4KIIIβ (major enviroxime-like compounds) or OSBP (minor enviroxime-like compounds), cellular factors involved in lipid metabolism and shown to be important for replication of diverse positive-strand RNA viruses. We classified E7(2) as a minor enviroxime-like compound, because the localization of OSBP changed in the presence of this inhibitor. Interestingly, both E7(2) and major enviroxime-like compound GW5074 interfered with the viral polyprotein processing. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. Studies with these compounds shed light on pathways shared by diverse picornaviruses that could be potential targets for the development of broad-spectrum antiviral drugs.
Resumo:
Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.
Resumo:
Purpose: To develop a micelle-enhanced spectrofluorimetric method for the assay of azilsartan (AZL) in bulk form and spiked human plasma without the need for derivatization procedure. Method: The proposed method was based on studying the fluorescence behavior of AZL in Cremophor RH 40 (Cr RH 40) micellar system. The fluorescence intensity was measured at 371 nm after excitation at 264 nm. The proposed procedure was validated according to International Council on Harmonization (ICH) guidelines. Results: In aqueous solution, the fluorescence intensity of AZL was greatly enhanced by more than 3- fold in the presence of Cr RH 40. The fluorescence –concentration plot was linear over the range of 10 – 500 ng.mL-1, with a limit of detection of 3.287 ngmL-1. The proposed method was successfully applied to the determination of AZL in pure powder form and spiked human plasma. The mean recovery of AZL in spiked human plasma using the proposed method was 90.54 ± 1.17 %. Conclusion: The suggested method is highly sensitive and simple, and can easily be applied for the quantification of AZL in pure powder form as well as in biological fluids such as plasma.