887 resultados para Remote sensing images


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture for active vision-based Unmanned Aerial Vehicle (UAV) guidance. The detection stage is based on steerable filters for edge ridge detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art line detection algorithms for power line detection from aerial imagery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite research that has been conducted elsewhere, little is known, to-date, about land cover dynamics and their impacts on land surface temperature (LST) in fast growing mega cities of developing countries. Landsat satellite images of 1989, 1999, and 2009 of Dhaka Metropolitan (DMP) area were used for analysis. This study first identified patterns of land cover changes between the periods and investigated their impacts on LST; second, applied artificial neural network to simulate land cover changes for 2019 and 2029; and finally, estimated their impacts on LST in respective periods. Simulation results show that if the current trend continues, 56% and 87% of the DMP area will likely to experience temperatures in the range of greater than or equal to 30°C in 2019 and 2029, respectively. The findings possess a major challenge for urban planners working in similar contexts. However, the technique presented in this paper would help them to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis developed a method for real-time and handheld 3D temperature mapping using a combination of off-the-shelf devices and efficient computer algorithms. It contributes a new sensing and data processing framework to the science of 3D thermography, unlocking its potential for application areas such as building energy auditing and industrial monitoring. New techniques for the precise calibration of multi-sensor configurations were developed, along with several algorithms that ensure both accurate and comprehensive surface temperature estimates can be made for rich 3D models as they are generated by a non-expert user.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urban areas are growing unsustainably around the world; however, the growth patterns and their associated drivers vary between contexts. As a result, research has highlighted the need to adopt case study based approaches to stimulate the development of new theoretic understandings. Using land-cover data sets derived from Landsat images (30 m × 30 m), this research identifies both patterns and drivers of urban growth in a period (1991-2001) when a number of policy acts were enacted aimed at fostering smart growth in Brisbane, Australia. A linear multiple regression model was estimated using the proportion of lands that were converted from non-built-up (1991) to built-up usage (2001) within a suburb as a dependent variable to identify significant drivers of land-cover changes. In addition, the hot spot analysis was conducted to identify spatial biases of land-cover changes, if any. Results show that the built-up areas increased by 1.34% every year. About 19.56% of the non-built-up lands in 1991 were converted into built-up lands in 2001. This conversion pattern was significantly biased in the northernmost and southernmost suburbs in the city. This is due to the fact that, as evident from the regression analysis, these suburbs experienced a higher rate of population growth, and had the availability of habitable green field sites in relatively flat lands. The above findings suggest that the policy interventions undertaken between the periods were not as effective in promoting sustainable changes in the environment as they were aimed for.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The advent of very high resolution (VHR) optical satellites capable of producing stereo images led to a new era in extracting digital elevation model which commenced with the launch of IKONOS. The special specifications of VHR optical satellites besides, the significant economic profit stimulated other countries and companies to have their constellations such as EROS-A1 and EROS-B1 as the cooperation between Israel and ImageSat. QuickBird, WorldView-1 and WorldVew-2 were launched by DigitalGlobe. ALOS and GeoEye-1 were offered by Japan and GeoEye Respectively. In addition to aforementioned satellites, Indian and South Korea initiated their own constellation by launching CartoSat-1 and KOPOSAT-2 respectively.The availability of all so-called satellites make a huge market of stereo images for extracting of digital elevation model and other correspondent applications such as, producing orthorectifcatin images and updating maps. Therefore, there is a need for a comprehensive comparison for scientific and commercial clients to choose appropriate satellite images and methods of generating digital elevation model to obtain optimum results. This paper will thus give a review about the specifications of VHR optical satellites. Then it will discuss the automatic elaborating of digital elevation model. Finally an overview of studies and corresponding results is reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aims to assess the accuracy of Digital Elevation Model (DEM) which is generated by using Toutin’s model. Thus, Toutin’s model was run by using OrthoEngineSE of PCI Geomatics 10.3.Thealong-track stereoimages of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) sensor with 15 m resolution were used to produce DEM on an area with low and near Mean Sea Level (MSL) elevation in Johor Malaysia. Despite the satisfactory pre-processing results the visual assessment of the DEM generated from Toutin’s model showed that the DEM contained many outliers and incorrect values. The failure of Toutin’s model may mostly be due to the inaccuracy and insufficiency of ASTER ephemeris data for low terrains as well as huge water body in the stereo images.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A low-altitude platform utilising a 1.8-m diameter tethered helium balloon was used to position a multispectral sensor, consisting of two digital cameras, above a fertiliser trial plot where wheat (Triticum spp.) was being grown. Located in Cecil Plains, Queensland, Australia, the plot was a long-term fertiliser trial being conducted by a fertiliser company to monitor the response of crops to various levels of nutrition. The different levels of nutrition were achieved by varying nitrogen application rates between 0 and 120 units of N at 40 unit increments. Each plot had received the same application rate for 10 years. Colour and near-infrared images were acquired that captured the whole 2 ha plot. These images were examined and relationships sought between the captured digital information and the crop parameters imaged at anthesis and the at-harvest quality and quantity parameters. The statistical analysis techniques used were correlation analysis, discriminant analysis and partial least squares regression. A high correlation was found between the image and yield (R2 = 0.91) and a moderate correlation between the image and grain protein content (R2 = 0.66). The utility of the system could be extended by choosing a more mobile platform. This would increase the potential for the system to be used to diagnose the causes of the variability and allow remediation, and/or to segregate the crop at harvest to meet certain quality parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of remote sensing imagery as auxiliary data in forest inventory is based on the correlation between features extracted from the images and the ground truth. The bidirectional reflectance and radial displacement cause variation in image features located in different segments of the image but forest characteristics remaining the same. The variation has so far been diminished by different radiometric corrections. In this study the use of sun azimuth based converted image co-ordinates was examined to supplement auxiliary data extracted from digitised aerial photographs. The method was considered as an alternative for radiometric corrections. Additionally, the usefulness of multi-image interpretation of digitised aerial photographs in regression estimation of forest characteristics was studied. The state owned study area located in Leivonmäki, Central Finland and the study material consisted of five digitised and ortho-rectified colour-infrared (CIR) aerial photographs and field measurements of 388 plots, out of which 194 were relascope (Bitterlich) plots and 194 were concentric circular plots. Both the image data and the field measurements were from the year 1999. When examining the effect of the location of the image point on pixel values and texture features of Finnish forest plots in digitised CIR photographs the clearest differences were found between front-and back-lighted image halves. Inside the image half the differences between different blocks were clearly bigger on the front-lighted half than on the back-lighted half. The strength of the phenomenon varied by forest category. The differences between pixel values extracted from different image blocks were greatest in developed and mature stands and smallest in young stands. The differences between texture features were greatest in developing stands and smallest in young and mature stands. The logarithm of timber volume per hectare and the angular transformation of the proportion of broadleaved trees of the total volume were used as dependent variables in regression models. Five different converted image co-ordinates based trend surfaces were used in models in order to diminish the effect of the bidirectional reflectance. The reference model of total volume, in which the location of the image point had been ignored, resulted in RMSE of 1,268 calculated from test material. The best of the trend surfaces was the complete third order surface, which resulted in RMSE of 1,107. The reference model of the proportion of broadleaved trees resulted in RMSE of 0,4292 and the second order trend surface was the best, resulting in RMSE of 0,4270. The trend surface method is applicable, but it has to be applied by forest category and by variable. The usefulness of multi-image interpretation of digitised aerial photographs was studied by building comparable regression models using either the front-lighted image features, back-lighted image features or both. The two-image model turned out to be slightly better than the one-image models in total volume estimation. The best one-image model resulted in RMSE of 1,098 and the two-image model resulted in RMSE of 1,090. The homologous features did not improve the models of the proportion of broadleaved trees. The overall result gives motivation for further research of multi-image interpretation. The focus may be improving regression estimation and feature selection or examination of stratification used in two-phase sampling inventory techniques. Keywords: forest inventory, digitised aerial photograph, bidirectional reflectance, converted image co­ordinates, regression estimation, multi-image interpretation, pixel value, texture, trend surface

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.