997 resultados para Remote measurement
Resumo:
This paper presents a new respiratory impedance estimator to minimize the error due to breathing. Its practical reliability was evaluated in a simulation using realistic signals. These signals were generated by superposing pressure and flow records obtained in two conditions: 1) when applying forced oscillation to a resistance- inertance- elastance (RIE) mechanical model; 2) when healthy subjects breathed through the unexcited forced oscillation generator. Impedances computed (4-32 Hz) from the simulated signals with the new estimator resulted in a mean value which was scarcely biased by the added breathing (errors less than 1 percent in the mean R, I , and E ) and had a small variability (coefficients of variation of R, I, and E of 1.3, 3.5, and 9.6 percent, respectively). Our results suggest that the proposed estimator reduces the error in measurement of respiratory impedance without appreciable extracomputational cost.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
OBJECTIVE: The estimation of blood pressure is dependent on the accuracy of the measurement devices. We compared blood pressure readings obtained with an automated oscillometric arm-cuff device and with an automated oscillometric wrist-cuff device and then assessed the prevalence of defined blood pressure categories. METHODS: Within a population-based survey in Dar es Salaam (Tanzania), we selected all participants with a blood pressure >/= 160/95 mmHg (n=653) and a random sample of participants with blood pressure <160/95 mmHg (n=662), based on the first blood pressure reading. Blood pressure was reassessed 2 years later for 464 and 410 of the participants, respectively. In these 874 subjects, we compared the prevalence of blood pressure categories as estimated with each device. RESULTS: Overall, the wrist device gave higher blood pressure readings than the arm device (difference in systolic/diastolic blood pressure: 6.3 +/- 17.3/3.7 +/- 11.8 mmHg, P<0.001). However, the arm device tended to give lower readings than the wrist device for high blood pressure values. The prevalence of blood pressure categories differed substantially depending on which device was used, 29% and 14% for blood pressure <120/80 mmHg (arm device versus wrist device, respectively), 30% and 33% for blood pressure 120-139/80-89 mmHg, 17% and 26% for blood pressure 140-159/90-99 mmHg, 12% and 13% for blood pressure 160-179/100-109 mmHg and 13% and 14% for blood pressure >/= 180/110 mmHg. CONCLUSIONS: A large discrepancy in the estimated prevalence of blood pressure categories was observed using two different automatic measurement devices. This emphasizes that prevalence estimates based on automatic devices should be considered with caution.
Resumo:
The advances of the semiconductor industry enable microelectromechanical systems sensors, signal conditioning logic and network access to be integrated into a smart sensor node. In this framework, a mixed-mode interface circuit for monolithically integrated gas sensor arrays was developed with high-level design techniques. This interface system includes analog electronics for inspection of up to four sensor arrays and digital logic for smart control and data communication. Although different design methodologies were used in the conception of the complete circuit, high-level synthesis tools and methodologies were crucial in speeding up the whole design cycle, enhancing reusability for future applications and producing a flexible and robust component.
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
BACKGROUND: Positional therapy that prevents patients from sleeping supine has been used for many years to manage positional obstructive sleep apnea (OSA). However, patients' usage at home and the long term efficacy of this therapy have never been objectively assessed.¦METHODS: Sixteen patients with positional OSA who refused or could not tolerate continuous positive airway pressure (CPAP) were enrolled after a test night study (T0) to test the efficacy of the positional therapy device. The patients who had a successful test night were instructed to use the device every night for three months. Nightly usage was monitored by an actigraphic recorder placed inside the positional device. A follow-up night study (T3) was performed after three months of positional therapy.¦RESULTS: Patients used the device on average 73.7 ± 29.3% (mean ± SD) of the nights for 8.0 ± 2.0 h/night. 10/16 patients used the device more than 80% of the nights. Compared to the baseline (diagnostic) night, mean apnea-hypopnea index (AHI) decreased from 26.7 ± 17.5 to 6.0 ± 3.4 with the positional device (p<0.0001) during T0 night. Oxygen desaturation (3%) index also fell from 18.4 ± 11.1 to 7.1 ± 5.7 (p = 0.001). Time spent supine fell from 42.8 ± 26.2% to 5.8 ± 7.2% (p < 0.0001). At three months (T3), the benefits persisted with no difference in AHI (p = 0.58) or in time spent supine (p = 0.98) compared to T0 night. The Epworth sleepiness scale showed a significant decrease from 9.4 ± 4.5 to 6.6 ± 4.7 (p = 0.02) after three months.¦CONCLUSIONS: Selected patients with positional OSA can be effectively treated by a positional therapy with an objective compliance of 73.7% of the nights and a persistent efficacy after three months.
Resumo:
The paracaspase MALT1 is a Cys-dependent, Arg-specific protease that plays an essential role in the activation and proliferation of lymphocytes during the immune response. Oncogenic activation of MALT1 is associated with the development of specific forms of B-cell lymphomas. Through specific cleavage of its substrates, MALT1 controls various aspects of lymphocyte activation, including the activation of transcriptional pathways, the stabilization of mRNAs, and an increase in cellular adhesion. In lymphocytes, the activity of MALT1 is tightly controlled by its inducible monoubiquitination, which promotes the dimerization of MALT1. Here, we describe both in vitro and in vivo assays that have been developed to assess MALT1 activity.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Resumo:
Rock slope instabilities such as rock slides, rock avalanche or deep-seated gravitational slope deformations are widespread in Alpine valleys. These phenomena represent at the same time a main factor that control the mountain belts erosion and also a significant natural hazard that creates important losses to the mountain communities. However, the potential geometrical and dynamic connections linking outcrop and slope-scale instabilities are often unknown. A more detailed definition of the potential links will be essential to improve the comprehension of the destabilization processes and to dispose of a more complete hazard characterization of the rock instabilities at different spatial scales. In order to propose an integrated approach in the study of the rock slope instabilities, three main themes were analysed in this PhD thesis: (1) the inventory and the spatial distribution of rock slope deformations at regional scale and their influence on the landscape evolution, (2) the influence of brittle and ductile tectonic structures on rock slope instabilities development and (3) the characterization of hazard posed by potential rock slope instabilities through the development of conceptual instability models. To prose and integrated approach for the analyses of these topics, several techniques were adopted. In particular, high resolution digital elevation models revealed to be fundamental tools that were employed during the different stages of the rock slope instability assessment. A special attention was spent in the application of digital elevation model for detailed geometrical modelling of past and potential instabilities and for the rock slope monitoring at different spatial scales. Detailed field analyses and numerical models were performed to complete and verify the remote sensing approach. In the first part of this thesis, large slope instabilities in Rhone valley (Switzerland) were mapped in order to dispose of a first overview of tectonic and climatic factors influencing their distribution and their characteristics. Our analyses demonstrate the key influence of neotectonic activity and the glacial conditioning on the spatial distribution of the rock slope deformations. Besides, the volumes of rock instabilities identified along the main Rhone valley, were then used to propose the first estimate of the postglacial denudation and filling of the Rhone valley associated to large gravitational movements. In the second part of the thesis, detailed structural analyses of the Frank slide and the Sierre rock avalanche were performed to characterize the influence of brittle and ductile tectonic structures on the geometry and on the failure mechanism of large instabilities. Our observations indicated that the geometric characteristics and the variation of the rock mass quality associated to ductile tectonic structures, that are often ignored landslide study, represent important factors that can drastically influence the extension and the failure mechanism of rock slope instabilities. In the last part of the thesis, the failure mechanisms and the hazard associated to five potential instabilities were analysed in detail. These case studies clearly highlighted the importance to incorporate different analyses and monitoring techniques to dispose of reliable and hazard scenarios. This information associated to the development of a conceptual instability model represents the primary data for an integrated risk management of rock slope instabilities. - Les mouvements de versant tels que les chutes de blocs, les éboulements ou encore les phénomènes plus lents comme les déformations gravitaires profondes de versant représentent des manifestations courantes en régions montagneuses. Les mouvements de versant sont à la fois un des facteurs principaux contrôlant la destruction progressive des chaines orogéniques mais aussi un danger naturel concret qui peut provoquer des dommages importants. Pourtant, les phénomènes gravitaires sont rarement analysés dans leur globalité et les rapports géométriques et mécaniques qui lient les instabilités à l'échelle du versant aux instabilités locales restent encore mal définis. Une meilleure caractérisation de ces liens pourrait pourtant représenter un apport substantiel dans la compréhension des processus de déstabilisation des versants et améliorer la caractérisation des dangers gravitaires à toutes les échelles spatiales. Dans le but de proposer un approche plus globale à la problématique des mouvements gravitaires, ce travail de thèse propose trois axes de recherche principaux: (1) l'inventaire et l'analyse de la distribution spatiale des grandes instabilités rocheuses à l'échelle régionale, (2) l'analyse des structures tectoniques cassantes et ductiles en relation avec les mécanismes de rupture des grandes instabilités rocheuses et (3) la caractérisation des aléas rocheux par une approche multidisciplinaire visant à développer un modèle conceptuel de l'instabilité et une meilleure appréciation du danger . Pour analyser les différentes problématiques traitées dans cette thèse, différentes techniques ont été utilisées. En particulier, le modèle numérique de terrain s'est révélé être un outil indispensable pour la majorité des analyses effectuées, en partant de l'identification de l'instabilité jusqu'au suivi des mouvements. Les analyses de terrain et des modélisations numériques ont ensuite permis de compléter les informations issues du modèle numérique de terrain. Dans la première partie de cette thèse, les mouvements gravitaires rocheux dans la vallée du Rhône (Suisse) ont été cartographiés pour étudier leur répartition en fonction des variables géologiques et morphologiques régionales. En particulier, les analyses ont mis en évidence l'influence de l'activité néotectonique et des phases glaciaires sur la distribution des zones à forte densité d'instabilités rocheuses. Les volumes des instabilités rocheuses identifiées le long de la vallée principale ont été ensuite utilisés pour estimer le taux de dénudations postglaciaire et le remplissage de la vallée du Rhône lié aux grands mouvements gravitaires. Dans la deuxième partie, l'étude de l'agencement structural des avalanches rocheuses de Sierre (Suisse) et de Frank (Canada) a permis de mieux caractériser l'influence passive des structures tectoniques sur la géométrie des instabilités. En particulier, les structures issues d'une tectonique ductile, souvent ignorées dans l'étude des instabilités gravitaires, ont été identifiées comme des structures très importantes qui contrôlent les mécanismes de rupture des instabilités à différentes échelles. Dans la dernière partie de la thèse, cinq instabilités rocheuses différentes ont été étudiées par une approche multidisciplinaire visant à mieux caractériser l'aléa et à développer un modèle conceptuel trois dimensionnel de ces instabilités. A l'aide de ces analyses on a pu mettre en évidence la nécessité d'incorporer différentes techniques d'analyses et de surveillance pour une gestion plus objective du risque associée aux grandes instabilités rocheuses.
Resumo:
Background: TIDratio indirectly reflects myocardial ischemia and is correlated with cardiacprognosis. We aimed at comparing the influence of three different softwarepackages for the assessment of TID using Rb-82 cardiac PET/CT. Methods: Intotal, data of 30 patients were used based on normal myocardial perfusion(SSS<3 and SRS<3) and stress myocardial blood flow 2mL/min/g)assessed by Rb-82 cardiac PET/CT. After reconstruction using 2D OSEM (2Iterations, 28 subsets), 3-D filtering (Butterworth, order=10, ωc=0.5), data were automatically processed, and then manually processed fordefining identical basal and apical limits on both stress and rest images.TIDratio were determined with Myometrix®, ECToolbox® and QGS®software packages. Comparisons used ANOVA, Student t-tests and Lin concordancetest (ρc). Results: All of the 90 processings were successfullyperformed. TID ratio were not statistically different between software packageswhen data were processed automatically (P=0.2) or manually (P=0.17). There was a slight, butsignificant relative overestimation of TID with automatic processing incomparison to manual processing using ECToolbox® (1.07 ± 0.13 vs 1.0± 0.13, P=0.001)and Myometrix® (1.07 ± 0.15 vs 1.01 ± 0.11, P=0.003) but not using QGS®(1.02 ±0.12 vs 1.05 ± 0.11, P=0.16). The best concordance was achieved between ECToolbox®and Myometrix® manual (ρc=0.67) processing.Conclusion: Using automatic or manual mode TID estimation was not significantlyinfluenced by software type. Using Myometrix® or ECToolbox®TID was significantly different between automatic and manual processing, butnot using QGS®. Software package should be account for when definingTID normal reference limits, as well as when used in multicenter studies. QGS®software seemed to be the most operator-independent software package, whileECToolbox® and Myometrix® produced the closest results.