955 resultados para Regular graphs
Resumo:
Surface tension induced convection in a liquid bridge held between two parallel, coaxial, solid disks is considered. The surface tension gradient is produced by a small temperature gradient parallel Co the undisturbed surface. The study is performed by using a mathematical regular perturbation approach based on a small parameter, e, which measures the deviation of the imposed temperature field from its mean value. The first order velocity field is given by a Stokes-type problem (viscous terms are dominant) with relatively simple boundary conditions. The first order temperature field is that imposed from the end disks on a liquid bridge immersed in a non-conductive fluid. Radiative effects are supposed to be negligible. The second order temperature field, which accounts for convective effects, is split into three components, one due to the bulk motion, and the other two to the distortion of the free surface. The relative importance of these components in terms of the heat transfer to or from the end disks is assessed
Resumo:
Sign.: []4, A-O2
Resumo:
Sign.: [calderón]8, A-P8
Resumo:
Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [B. Luque et al., PLoS ONE 6, 9 (2011)] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here, we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree distributions, mean distances, clustering coefficients, etc., associated to the bifurcation cascades and their accumulation points. We describe how the resultant families of graphs can be framed into a renormalization group scheme in which fixed-point graphs reveal their scaling properties. These fixed points are then re-derived from an entropy optimization process defined for the graph sets, confirming a suggested connection between renormalization group and entropy optimization. Finally, we provide analytical and numerical results for the graph entropy and show that it emulates the Lyapunov exponent of the map independently of its sign.
Resumo:
We analyze the properties of networks obtained from the trajectories of unimodal maps at the transi- tion to chaos via the horizontal visibility (HV) algorithm. We find that the network degrees fluctuate at all scales with amplitude that increases as the size of the network grows, and can be described by a spectrum of graph-theoretical generalized Lyapunov exponents. We further define an entropy growth rate that describes the amount of information created along paths in network space, and find that such en- tropy growth rate coincides with the spectrum of generalized graph-theoretical exponents, constituting a set of Pesin-like identities for the network.