931 resultados para Reduction of ZnO
Resumo:
Microwave reduction testing using activated charcoal as a reducing agent was performed on a sample of Black Thor chromite ore from the Ring of Fire deposit in Northern Ontario. First, a thermodynamic model was constructed for the system. Activity coefficients for several species were found in the literature. The model predicted chromium grades of 61.60% and recoveries of 93.43% for a 15% carbon addition. Next, reduction testing on the chromite ore was performed. Tests were performed at increasing power levels and reduction times. Testing atmospheres used were air, argon, and vacuum. The reduced product had maximum grades of 72.89% and recoveries of 80.37%. These maximum values were obtained in the same test where an argon atmosphere was used, with a carbon addition of 15%, optimal power level of 1200 W (actual 1171 W), and a time of 400 seconds. During this test, 17.53% of the initial mass was lost as gas, a carbon grade of 1.95% was found for the sintered core product. Additional work is recommended to try and purify the sintered core product as well as reduce more of the initial sample. Changing reagent schemes or a two step reduction / separation process could be implemented.
Resumo:
Elasmobranch fish, particularly deep-sea sharks, are the most important component of the by-catch of the hake semipelagic near-bottom 'pedra-e-bola' longline fishery in the Algarve (South Portugal) and most of these fish are discarded. The effects of the removal of the lower hooks were evaluated, in terms of target and by-catch reductions, by quantifying the catches of each hook relative to the distance from the bottom. The analysis showed that most European hake (Merluccius merluccius), the target species of this fishery, were caught in the middle range of the hooks, with very few individuals caught near the bottom, whereas for sharks the situation was the opposite, with most hooked near the bottom. The removal of the lower three pairs of hooks would result in a small reduction in the catch of the target species, but a much more significant reduction in elasmobranch by-catch. In the specific case of the blackmouth catshark (Galeus melastomus), discard mortality would be further minimized due to the fact that the lower hooks capture significantly smaller animals that are always discarded compared with hooks that are more distant from the bottom.
Resumo:
Metal nanoparticle catalysts have in the last decades been extensively researched for their enhanced performance compared to their bulk counterpart. Properties of nanoparticles can be controlled by modifying their size and shape as well as adding a support and stabilizing agent. In this study, preformed colloidal gold nanoparticles supported on activated carbon were tested on the reduction of 4-nitrophenol by NaBH4, a model reaction for evaluating catalytic activity of metal nanoparticles and one with high significance in the remediation of industrial wastewaters. Methods of wastewater remediation are reviewed, with case studies from literature on two major reactions, ozonation and reduction, displaying the synergistic effects observed with bimetallic and trimetallic catalysts, as well as the effects of differences in metal and support. Several methods of preparation of nanoparticles are discussed, in particular, the sol immobilization technique, which was used to prepare the supported nanoparticles in this study. Different characterization techniques used in this study to evaluate the materials and spectroscopic techniques to analyze catalytic activities of the catalyst are reviewed: ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) analysis, X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) imaging. Optimization of catalytic parameters was carried out through modifications in the reaction setup. The effects of the molar ratio of reactants, stirring, type and amount of stabilizing agent are explored. Another important factor of an effective catalyst is its reusability and long-term stability, which was examined with suggestions for further studies. Lastly, a biochar support was newly tested for its potential as a replacement for activated carbon.
Resumo:
Levulinic Acid and its esters are polyfunctional molecules obtained by biomass conversion. The most investigated strategy for the valorization of LA is its hydrogenation towards fuel additives, solvents and other added-value bio-based chemicals and, in this context, heterogeneous and homogeneous catalysts are widely used. Most commonly, it is typically performed with molecular hydrogen (H2) in batch systems, with high H2 pressures and noble metal catalysts. Several works reported the batch liquid-phase hydrogenation of LA and its esters by heterogenous catalysts which contained support with Brønsted acidity in order to obtain valeric acid and its esters. Furthermore, bimetallic and monometallic systems composed by both a metal for hydrogen activation and a promoter were demonstrated to be suitable catalysts for reduction of carboxylic group. However, there were no studies in the literature reporting the hydrogenation of alkyl levulinates to 1-pentanol (1-PAO). Therefore, bimetallic and monometallic catalysts were tested for one-pot hydrogenation of methyl levulinate to 1-PAO. Re-based catalysts were investigated, this way proving the crucial role of the support for promoting the ring-opening of GVL and its consecutive reduction to valeric compounds. All the reactions were performed in neat without the need of any additional solvents. In these conditions, bimetallic Re-Ru-O/HZSM-5 afforded methyl valerate and valeric acid (VA) with a productivity of 512 mmol gmetal-1 h-1, one of the highest reported in literature to date. Rhenium can also promote the reduction of valeric acid/esters to PV through the formation of 1-pentanol and its efficient esterification/transesterification with the starting material. However, it was proved that Re-based catalysts may undergo leaching of active phase in presence of carboxylic acids, especially by working in neat with VA. Furthermore, the over-reduction of rhenium affects catalytic performance, suggesting not only that a pre-reduction step is unnecessary but also that it could be detrimental for catalyst’s activity.
Resumo:
OBJECTIVES: We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-nitro-L-arginine methyl ester (L-NAME). METHODS: Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and location of phosphodiesterase-5 and phosphodiesterase-3 were assessed by immunohistochemistry, and cGMP plasma levels were measured by ELISA. RESULTS: In isolated hearts, sildenafil prevented the reduction of diastolic relaxation (dP/dt) that was induced by L-NAME. In addition, phosphodiesterase-5 immunoreactivity was localized in the intercalated discs between the myocardial cells. The staining intensity was reduced by L-NAME, and sildenafil treatment abolished this reduction. Consistent with these results, the plasma levels of cGMP were decreased in the L-NAME-treated rats but not in rats that were treated with L-NAME + sildenafil. CONCLUSION: The sildenafil-induced attenuation of the deleterious hemodynamic and cardiac morphological effects of L-NAME in cardiac myocytes is mediated (at least in part) by the inhibition of phosphodiesterase-5.
Resumo:
OBJECTIVES: Memantine is an N-methyl-d-aspartate (NMDA) glutamate receptor antagonist used to treat Alzheimer's disease. Previous studies have suggested that receptor blockers act as neuroprotective agents; however, no study has specifically investigated the impact that these drugs have on the heart. We sought to evaluate the effects of memantine on nuclear size reduction in cardiac cells exposed to cold stress. METHOD: We used male EPM-Wistar rats (n=40) divided into 4 groups: 1) Matched control (CON); 2) Memantine-treated rats (MEM); 3) Rats undergoing induced hypothermia (IH) and 4) Rats undergoing induced hypothermia that were also treated with memantine (IHM). Animals in the MEM and IHM groups were treated by oral gavage administration of 20 mg/kg/day memantine over an eight-day period. Animals in the IH and IHM groups were submitted to 4 hours of hypothermia in a controlled environment with a temperature of - 8ºC on the last day of the study. RESULTS: The MEM group had the largest cardiomyocyte nuclear size (151 ± 3.5 μm³ vs. CON: 142 ± 2.3 μm³; p<0.05), while the IH group had the smallest mean value of nuclear size. The nuclear size of the IHM group was preserved (125 ± 2.9 μm³) compared to the IH group (108 ± 1.7 μm³; p<0.05). CONCLUSION: Memantine prevented the nuclear size reduction of cardiomyocytes in rats exposed to cold stress.
Resumo:
Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.
Resumo:
Using ab initio total energy calculations, we show that bilayer systems of ZnO nanoribbons, (ZnO)(2)NR, doped with Co atoms exhibit a piezomagnetic behavior. We find the formation of energetically stable zigzag chains of Co atoms along the edge sites of (ZnO)(2)NR's, Co(Zn(chain))-(ZnO)(2)NR. At the ground state, the antiferromagnetic and the ferromagnetic states are very close in energy, whereas upon longitudinal stretch, parallel to the nanoribbon growth direction, it becomes ferromagnetic. Further electronic structure calculations indicate that not only the magnetic state but also the electronic structure of CoZn(chain)-(ZnO)(2)NR can be tuned by the mechanical stretch. In this case, we find that stretched NR's exhibit dispersive unpaired electronic states within the (ZnO)(2)NR band gap.
Resumo:
Transparent conducting oxides (TCO) are widely used in technological applications ranging from photovoltaics to thin-film transparent field-effect transistors. In this work we report a first-principles investigation, based on density-functional theory, of the atomic and electronic properties of Ga(2)O(3)(ZnO)(6) (GZO(6)), which is a promising candidate to be used as host oxide for wide band gap TCO applications. We identify a low-energy configuration for the coherent distribution of the Ga and Zn atoms in the cation positions within the experimentally reported orthorhombic GZO(6) structure. Four Ga atoms are located in four-fold sites, while the remaining 12 Ga atoms in the unit cell form four shared Ga agglomerates (a motif of four atoms). The Zn atoms are distributed in the remaining cation sites with effective coordination numbers from 3.90 to 4.50. Furthermore, we identify the natural formation of twin-boundaries in GZO(6), which can explain the zigzag modulations observed experimentally by high-resolution transmission electron microscopy in GZO(n) (n=9). Due to the intrinsic twin-boundary formation, polarity inversion in the ZnO tetrahedrons is present which is facilitated by the formation of the Ga agglomerates. Our analysis shows that the formation of fourfold Ga sites and Ga agglomerates are stabilized by the electronic octet rule, while the distribution of Ga atoms and the formation of the twin-boundary help alleviate excess strain. Finally we identify that the electronic properties of GZO(6) are essentially determined by the electronic properties of ZnO, i.e., there are slight changes in the band gap and optical absorption properties.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.
Resumo:
In 82 wild-caught Crocodylus porosus, levels of NADH-MetHb reductase and GSH seem adequate to maintain hemoglobin in its reduced functional state. Studies of C. porosus erythrocytes in vitro show reduction of metHb in the presence of lactate, glucose and plasma, but not pyruvate. These findings, together with recent data which show low metHb in a variety of reptiles, cast doubt on the accepted view that high levels of MetHb are typical of healthy reptiles. One explanation for the sharp contrast between earlier and more recent data could be technical. We found low metHb in Crocodylus johnstoni, Chelodina longicollis and Sphenomorphus quoyi. However, high and variable values reminiscent of many of the earlier data were obtained by omitting final centrifugation prior to spectrophotometry. Interestingly, this step is not part of the standard clinical method but is necessary in analyses of blood with nucleated red cells. These observations suggest that high metHb may not be typical of reptiles after all.
Resumo:
This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.
Resumo:
Purpose: To evaluate rates of visual field progression in eyes with optic disc hemorrhages and the effect of intraocular pressure (IOP) reduction on these rates. Design: Observational cohort study. Participants: The study included 510 eyes of 348 patients with glaucoma who were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and followed for an average of 8.2 years. Methods: Eyes were followed annually with clinical examination, standard automated perimetry visual fields, and optic disc stereophotographs. The presence of optic disc hemorrhages was determined on the basis of masked evaluation of optic disc stereophotographs. Evaluation of rates of visual field change during follow-up was performed using the visual field index (VFI). Main Outcome Measures: The evaluation of the effect of optic disc hemorrhages on rates of visual field progression was performed using random coefficient models. Estimates of rates of change for individual eyes were obtained by best linear unbiased prediction (BLUP). Results: During follow-up, 97 (19%) of the eyes had at least 1 episode of disc hemorrhage. The overall rate of VFI change in eyes with hemorrhages was significantly faster than in eyes without hemorrhages (-0.88%/year vs. -0.38%/year, respectively, P < 0.001). The difference in rates of visual field loss pre- and post-hemorrhage was significantly related to the reduction of IOP in the post-hemorrhage period compared with the pre-hemorrhage period (r = -0.61; P < 0.001). Each 1 mmHg of IOP reduction was associated with a difference of 0.31%/year in the rate of VFI change. Conclusions: There was a beneficial effect of treatment in slowing rates of progressive visual field loss in eyes with optic disc hemorrhage. Further research should elucidate the reasons why some patients with hemorrhages respond well to IOP reduction and others seem to continue to progress despite a significant reduction in IOP levels. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2010; 117: 2061-2066 (C) 2010 by the American Academy of Ophthalmology.
Resumo:
Introduction Reduction of automatic pressure support based on a target respiratory frequency or mandatory rate ventilation (MRV) is available in the Taema-Horus ventilator for the weaning process in the intensive care unit (ICU) setting. We hypothesised that MRV is as effective as manual weaning in post-operative ICU patients. Methods There were 106 patients selected in the postoperative period in a prospective, randomised, controlled protocol. When the patients arrived at the ICU after surgery, they were randomly assigned to either: traditional weaning, consisting of the manual reduction of pressure support every 30 minutes, keeping the respiratory rate/tidal volume (RR/TV) below 80 L until 5 to 7 cmH(2)O of pressure support ventilation (PSV); or automatic weaning, referring to MRV set with a respiratory frequency target of 15 breaths per minute (the ventilator automatically decreased the PSV level by 1 cmH(2)O every four respiratory cycles, if the patient`s RR was less than 15 per minute). The primary endpoint of the study was the duration of the weaning process. Secondary endpoints were levels of pressure support, RR, TV (mL), RR/TV, positive end expiratory pressure levels, FiO(2) and SpO(2) required during the weaning process, the need for reintubation and the need for non-invasive ventilation in the 48 hours after extubation. Results In the intention to treat analysis there were no statistically significant differences between the 53 patients selected for each group regarding gender (p = 0.541), age (p = 0.585) and type of surgery (p = 0.172). Nineteen patients presented complications during the trial (4 in the PSV manual group and 15 in the MRV automatic group, p < 0.05). Nine patients in the automatic group did not adapt to the MRV mode. The mean +/- sd (standard deviation) duration of the weaning process was 221 +/- 192 for the manual group, and 271 +/- 369 minutes for the automatic group (p = 0.375). PSV levels were significantly higher in MRV compared with that of the PSV manual reduction (p < 0.05). Reintubation was not required in either group. Non-invasive ventilation was necessary for two patients, in the manual group after cardiac surgery (p = 0.51). Conclusions The duration of the automatic reduction of pressure support was similar to the manual one in the postoperative period in the ICU, but presented more complications, especially no adaptation to the MRV algorithm. Trial Registration Trial registration number: ISRCTN37456640
Resumo:
Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Th. To this end, Th of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 mu g/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) cyclic (CTAP; 0.1 and 1.0 mu g/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 mu g/100 nL/animal) or saline (vehicle, 100 nu animal), during normoxia and hypoxia (7% inspired O(2)). Under normoxia, no effect of opioid antagonists on Th was observed. Hypoxia induced Th to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Th during hypoxia but caused a longer latency for the return of Th to the normoxic values just after low O(2) exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Th during hypoxia while the mu and delta receptors are involved in the increase of Th during normoxia post-hypoxia. (C) 2009 Elsevier B.V. All rights reserved.