910 resultados para Recycling centers
Resumo:
Myosin Va is associated with discrete vesicle populations in a number of cell types, but little is known of the function of myosin Vb. Yeast two-hybrid screening of a rabbit parietal cell cDNA library with dominant active Rab11a (Rab11aS20V) identified myosin Vb as an interacting protein for Rab11a, a marker for plasma membrane recycling systems. The isolated clone, corresponding to the carboxyl terminal 60 kDa of the myosin Vb tail, interacted with all members of the Rab11 family (Rab11a, Rab11b, and Rab25). GFP-myosin Vb and endogenous myosin Vb immunoreactivity codistributed with Rab11a in HeLa and Madin-Darby canine kidney (MDCK) cells. As with Rab11a in MDCK cells, the myosin Vb immunoreactivity was dispersed with nocodazole treatment and relocated to the apical corners of cells with taxol treatment. A green fluorescent protein (GFP)-myosin Vb tail chimera overexpressed in HeLa cells retarded transferrin recycling and caused accumulation of transferrin and the transferrin receptor in pericentrosomal vesicles. Expression of the myosin Vb tail chimera in polarized MDCK cells stably expressing the polymeric IgA receptor caused accumulation of basolaterally endocytosed polymeric IgA and the polymeric IgA receptor in the pericentrosomal region. The myosin Vb tail had no effects on transferrin trafficking in polarized MDCK cells. The GFP-myosin Va tail did not colocalize with Rab11a and had no effects on recycling system vesicle distribution in either HeLa or MDCK cells. The results indicate myosin Vb is associated with the plasma membrane recycling system in nonpolarized cells and the apical recycling system in polarized cells. The dominant negative effects of the myosin Vb tail chimera indicate that this unconventional myosin is required for transit out of plasma membrane recycling systems.
Resumo:
Maintenance of genomic integrity and stable transmission of genetic information depend on a number of DNA repair processes. Failure to faithfully perform these processes can result in genetic alterations and subsequent development of cancer and other genetic diseases. In the eukaryote Saccharomyces cerevisiae, homologous recombination is the major pathway for repairing DNA double-strand breaks. The key role played by Rad52 in this pathway has been attributed to its ability to seek out and mediate annealing of homologous DNA strands. In this study, we find that S. cerevisiae Rad52 fused to green fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by γ-irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively during the S phase of mitotic cells, consistent with coordination between recombinational repair and DNA replication. This notion is further strengthened by the dramatic increase in the frequency of Rad52 focus formation observed in a pol12-100 replication mutant and a mec1 DNA damage checkpoint mutant. Furthermore, our data indicate that each Rad52 focus represents a center of recombinational repair capable of processing multiple DNA lesions.
Resumo:
SoxR is a transcription factor that governs a global defense against the oxidative stress caused by nitric oxide or excess superoxide in Escherichia coli. SoxR is a homodimer containing a pair of [2Fe-2S] clusters essential for its transcriptional activity, and changes in the stability of these metal centers could contribute to the activation or inactivation of SoxR in vivo. Herein we show that reduced glutathione (GSH) in aerobic solution disrupts the SoxR [2Fe-2S] clusters, releasing Fe from the protein and eliminating SoxR transcriptional activity. This disassembly process evidently involves oxygen-derived free radicals. The loss of [2Fe-2S] clusters does not occur in anaerobic solution and is blocked in aerobic solution by the addition of superoxide dismutase and catalase. Although H2O2 or xanthine oxidase and hypoxanthine (to generate superoxide) were insufficient on their own to cause [2Fe-2S] cluster loss, they did accelerate the rate of disassembly after GSH addition. Oxidized GSH alone was ineffective in disrupting the clusters, but the rate of [2Fe-2S] cluster disassembly was maximal when reduced and oxidized GSH were present at a ratio of approximately 1:3, which suggests the critical involvement of a GSH-based free radical in the disassembly process. Such a reaction might occur in vivo: we found that the induction by paraquat of SoxR-dependent soxS transcription was much higher in a GSH-deficient E. coli strain than in its GSH-containing parent. The results imply that GSH may play a significant role during the deactivation process of SoxR in vivo. Ironically, superoxide production seems both to activate SoxR and, in the GSH-dependent disassembly process, to switch off this transcription factor.
Resumo:
During receptor mediated endocytosis, at least a fraction of recycling cargo typically accumulates in a pericentriolar cluster of tubules and vesicles. However, it is not clear if these endosomal structures are biochemically distinct from the early endosomes from which they are derived. To better characterize this pericentriolar endosome population, we determined the distribution of two endogenous proteins known to be functionally involved in receptor recycling [Rab4, cellubrevin (Cbvn)] relative to the distribution of a recycling ligand [transferrin (Tfn)] as it traversed the endocytic pathway. Shortly after internalization, Tfn entered a population of early endosomes that contained both Rab4 and Cbvn, demonstrated by triple label immunofluorescence confocal microscopy. Tfn then accumulated in the pericentriolar cluster of recycling vesicles (RVs). However, although these pericentriolar endosomes contained Cbvn, they were strikingly depleted of Rab4. The ability of internalized Tfn to reach the Rab4-negative population was not blocked by nocodazole, although the characteristic pericentriolar location of the population was not maintained in the absence of microtubules. Similarly, Rab4-positive and -negative populations remained distinct in cells treated with brefeldin A, with only Rab4-positive elements exhibiting the extended tubular morphology induced by the drug. Thus, at least with respect to Rab4 distribution, the pathway of Tfn receptor recycling consists of at least two biochemically and functionally distinct populations of endosomes, a Rab4-positive population of early endosomes to which incoming Tfn is initially delivered and a Rab4-negative population of recycling vesicles that transiently accumulates Tfn on its route back to the plasma membrane.
Resumo:
Solid-state NMR spectra of natural abundance 13C in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26 was measured. When the quinone acceptors were removed and continuous visible illumination of the sample was provided, exceptionally strong nuclear spin polarization was observed in NMR lines with chemical shifts resembling those of the aromatic carbons in bacteriochlorophyll and bacteriopheophytin. The observation of spin polarized 15N nuclei in bacteriochlorophyll and bacteriopheophytin was previously demonstrated with nonspecifically 15N-labeled reaction centers. Both the carbon and the nitrogen NMR studies indicate that the polarization is developed on species that carry unpaired electrons in the early electron transfer steps, including the bacteriochlorophyll dimer donor P860 and probably the bacteriopheophytin acceptor. I. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum; most lines were absorptive but the methine carbons of the porphyrin ring (alpha, beta, gamma, ) exhibited emissive polarization. The change in the sign of the hyperfine coupling at these sites indicates the existence of nodes in the spin density distribution on the tetrapyrrole cofactors flanking each methine carbon bridge.
Resumo:
Although trypanosomatids are known to rapidly transaminate exogenous aromatic amino acids in vitro and in vivo, the physiological significance of this reaction is not understood. In postmitochondrial supernatants prepared from Trypanosoma brucei brucei and Crithidia fasciculata, we have found that aromatic amino acids were the preferred amino donors for the transamination of alpha-ketomethiobutyrate to methionine. Intact C. fasciculata grown in the presence of [15N]tyrosine were found to contain detectable [15N]methionine, demonstrating that this reaction occurs in situ in viable cells. This process is the final step in the recycling of methionine from methylthioadenosine, a product of decarboxylated S-adenosylmethionine from the polyamine synthetic pathway. Mammalian liver, in contrast, preferentially used glutamine for this reaction and utilized a narrower range of amino donors than seen with the trypanosomatids. Studies with methylthioadenosine showed that this compound was readily converted to methionine, demonstrating a fully functional methionine-recycling pathway in trypanosomatids.
Resumo:
The x-ray crystallographic structure of the photosynthetic reaction center (RC) has proven critical in understanding biological electron transfer processes. By contrast, understanding of intraprotein proton transfer is easily lost in the immense richness of the details. In the RC of Rhodobacter (Rb.) sphaeroides, the secondary quinone (QB) is surrounded by amino acid residues of the L subunit and some buried water molecules, with M- and H-subunit residues also close by. The effects of site-directed mutagenesis upon RC turnover and quinone function have implicated several L-subunit residues in proton delivery to QB, although some species differences exist. In wild-type Rb. sphaeroides, Glu L212 and Asp L213 represent an inner shell of residues of particular importance in proton transfer to QB. Asp L213 is crucial for delivery of the first proton, coupled to transfer of the second electron, while Glu L212, possibly together with Asp L213, is necessary for delivery of the second proton, after the second electron transfer. We report here the first study, by site-directed mutagenesis, of the role of the H subunit in QB function. Glu H173, one of a cluster of strongly interacting residues near QB, including Asp L213, was altered to Gln. In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant. However, the first electron transfer equilibrium, QA-QB <==> QAQB-, was decreased, which is opposite to the effect of the Asp L213 --> Asn mutation. These major disruptions of events coupled to proton delivery to QB were largely reversed by the addition of azide (N3-). The results support a major role for electrostatic interactions between charged groups in determining the protonation state of certain entities, thereby controlling the rate of the second electron transfer. It is suggested that the essential electrostatic effect may be to "potentiate" proton transfer activity by raising the pK of functional entities that actually transfer protons in a coupled fashion with the second electron transfer. Candidates include buried water (H3O+) and Ser L223 (serine-OH2+), which is very close to the O5 carbonyl of the quinone.
Resumo:
Synaptotagmin (Syt) is an inositol high-polyphosphate series [IHPS inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate] binding synaptic vesicle protein. A polyclonal antibody against the C2B domain (anti-Syt-C2B), an IHPS binding site, was produced. The specificity of this antibody to the C2B domain was determined by comparing its ability to inhibit IP4 binding to the C2B domain with that to inhibit the Ca2+/phospholipid binding to the C2A domain. Injection of the anti-Syt-C2B IgG into the squid giant presynapse did not block synaptic release. Coinjection of IP4 and anti-Syt-C2B IgG failed to block transmitter release, while IP4 itself was a powerful synpatic release blocker. Repetitive stimulation to presynaptic fiber injected with anti-Syt-C2B IgG demonstrated a rapid decline of the postsynaptic response amplitude probably due to its block of synaptic vesicle recycling. Electron microscopy of the anti-Syt-C2B-injected presynapse showed a 90% reduction of the numbers of synaptic vesicles. These results, taken together, indicate that the Syt molecule is central, in synaptic vesicle fusion by Ca2+ and its regulation by IHPS, as well as in the recycling of synaptic vesicles.
Resumo:
Learning is widely thought to result from altered potency of synapses within the neural pathways that mediate the learned behavior. Support for this belief, which pervades current physiological and computational thinking, comes especially from the analysis of cases of simple learning in invertebrates. Here, evidence is presented that in one such case, habituation of crayfish escape, the learning is more due to onset of tonic descending inhibition than to the intrinsic depression of circuit synapses to which it was previously attributed. Thus, the altered performance seems to depend at least as much on events in higher centers as on local plasticity.
Resumo:
Flash-induced voltage changes (electrogenic events) in photosystem I particles from spinach, oriented in a phospholipid layer, have been studied at room temperature on a time scale ranging from 1 micros to several seconds. A phospholipid layer containing photosystem I particles was adsorbed to a Teflon film separating two aqueous compartments. Voltage changes were measured across electrodes immersed in the compartments. In the absence of added electron donors and acceptors, a multiphasic voltage increase, associated with charge separation, was followed by a decrease, associated with charge recombination. Several kinetic phases were resolved: a rapid (<1 micros) increase, ascribed to electron transfer from the primary electron donor P700 to the iron-sulfur electron acceptor FB, was followed by a slower, biphasic increase with time constants of 30 and 200 micros. The 30-micros phase is assigned to electron transfer from FB to the iron-sulfur center FA. The voltage decrease had a time constant of 90 ms, ascribed to charge recombination from FA to P700. Upon chemical prereduction of FA and FB the 30- and 200-micros phases disappeared and the decay time constant was accelerated to 330 micros, assigned to charge recombination from the phylloquinone electron acceptor (A1) or the iron-sulfur center FX to P700.
Resumo:
Howard University was recently identified as a school that lacks recycling initiatives and policies. In response, Howard University drafted a plan to become the greenest college in the United States. This study was conducted to identify if there were existing recycling practices on the campus, compare the practices, if applicable, to the local recycling regulations, and present potential obstacles and recommendations to be used by Howard University while designing their recycling program. This study was performed by visiting the campus to identify recycling practices and interviewing campus occupants, and comparing the findings to the local recycling regulations. The key finding of this study is that Howard University does not have a recycling program and does not comply with local recycling regulations.
Resumo:
The Municipality of Anchorage (MOA) is required to better manage, operate and control municipal solid waste (MSW) after the Anchorage Assembly instituted a Zero Waste Policy. Two household curbside recycling programs (CRPs), pay-as-you-throw (PAYT) and single-stream, were compared and evaluated to determine an optimal municipal solid waste diversion method for households within the MOA. The analyses find: (1) a CRP must be designed from comprehensive analysis, models and data correlation that combine demographic and psychographic variables; and (2) CRPs can be easily adjusted towards community-specific goals using technology, such as Geographic Information System (GIS) and Radio Frequency Identification (RFID). Combining resources of policy-makers, businesses, and other viable actors are necessary components to produce a sustainable, economically viable curbside recycling program.
Resumo:
Paper submitted to the 42nd Congress of ERSA, Dortmund, August 27th–31st 2002.
Resumo:
Information technologies (IT) currently represent 2% of CO2 emissions. In recent years, a wide variety of IT solutions have been proposed, focused on increasing the energy efficiency of network data centers. Monitoring is one of the fundamental pillars of these systems, providing the information necessary for adequate decision making. However, today’s monitoring systems (MSs) are partial, specific and highly coupled solutions. This study proposes a model for monitoring data centers that serves as a basis for energy saving systems, offered as a value-added service embedded in a device with low cost and power consumption. The proposal is general in nature, comprehensive, scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs of changing and dynamic environments. Further, a prototype of the system has been implemented in several devices, which has allowed validation of the proposal in addition to identification of the minimum hardware profile required to support the model.
Resumo:
Lithium is used in the cathode and electrolyte of rechargeable batteries in many portable electronics and electric vehicles, and is thus seen as a critical component of modern technology (Gruber et al., 2011). Electric vehicles are promoted as a way to reduce carbon emissions associated with the transportation sector, which accounts for 14.3% of anthropogenic greenhouse gas emissions (OECD International Transport Forum, 2010). However, the sustainability of lithium procurement will influence the overall environmental impact of this proposed “green” solution. It is estimated that 66% of the world’s lithium resource is contained in natural brines, 24% in pegmatites, and 8% in sedimentary rocks such as hectorite clays (Gruber et al., 2011). It has been shown that “[r]ecycling of lithium from Li-ion batteries may be a critical factor in balancing the supply of lithium with future demand” (Gruber et al., 2011). In an attempt to quantify energy and materials consumption associated with production of a unit of useful lithium compounds, industry reports and peer-reviewed scientific literature concerning lithium mining and lithium recycling were reviewed and compared. Other aspects of sustainability, such as waste or by-products produced in the production of a unit of useful lithium, were also explored. Thus, this paper will serve to further the evaluation of the comparative environmental consequences associated with lithium production via extraction versus recycling. Efficiencies must be made in both processes to maximize productivity while minimizing ecological harm.