983 resultados para Receptors, Natural Killer Cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore phenotype and function of NK cells in kidney transplant recipients, we investigated the peripheral NK cell repertoire, capacity to respond to various stimuli and impact of immunosuppressive drugs on NK cell activity in kidney transplant recipients. CD56(dim) NK cells of kidney transplanted patients displayed an activated phenotype characterized by significantly decreased surface expression of CD16 (p=0.0003), CD226 (p<0.0001), CD161 (p=0.0139) and simultaneously increased expression of activation markers like HLA-DR (p=0.0011) and CD25 (p=0.0015). Upon in vitro stimulation via Ca++-dependent signals, down-modulation of CD16 was associated with induction of interferon (IFN)-gamma expression. CD16 modulation and secretion of NFAT-dependent cytokines such as IFN-gamma, TNF-alpha, IL-10 and IL-31 were significantly suppressed by treatment of isolated NK cells with calcineurin inhibitors but not with mTOR inhibitors. In kidney transplant recipients, IFN-gamma production was retained in response to HLA class I-negative target cells and to non-specific stimuli, respectively. However, secretion of other cytokines like IL-13, IL-17, IL-22 and IL-31 was significantly reduced compared to healthy donors. In contrast to suppression of cytokine expression at the transcriptional level, cytotoxin release, i.e. perforin, granzyme A/B, was not affected by immunosuppression in vitro and in vivo in patients as well as in healthy donors. Thus, immunosuppressive treatment affects NK cell function at the level of NFAT-dependent gene expression whereby calcineurin inhibitors primarily impair cytokine secretion while mTOR inhibitors have only marginal effects. Taken together, NK cells may serve as indicators for immunosuppression and may facilitate a personalized adjustment of immunosuppressive medication in kidney transplant recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary fiber was classified according to its solubility in an attempt to relate physiological effects to chemical types of fiber. Soluble fibers (B-glucans, gums, wheat dextrin, psyllium, pectin, inulin) were considered to have benefits on serum lipids, while insoluble fibers (cellulose, lignin, pectins, hemicelluloses) were linked with laxation benefits. More important characteristics of fiber in terms of physiological benefits are viscosity and fermentability. Viscous fibers (pectins, B-glucans, gums, psyllium) are those that have gel-forming properties in the intestinal tract, and fermentable fibers (wheat dextrin, pectins, B-glucans, gum, inulin) are those that can be metabolized by colonic bacteria. Objective: To summarize the beneficial effects of dietary fiber, as nutraceuticals, in order to maintain a healthy gastrointestinal system. Methods: Our study is a systematic review. Electronic databases, including PubMed, Medline, with supplement of relevant websites, were searched. We included randomized and non-randomized clinical trials, epidemiological studies (cohort and case-control). We excluded case series, case reports, in vitro and animal studies. Results: The WHO, the U.S. Food and Drug Administration (FDA), the Heart Foundation and the Romanian Dietary Guidelines recommends that adults should aim to consume approximately 25–30 g fiber daily. Dietary fiber is found in the indigestible parts of cereals, fruits and vegetables. There are countries where people don’t eat enough food fibers, these people need to take some kind of fiber supplement. Evidence has been found that dietary fiber from whole foods or supplements may (1) reduce the risk of cardiovascular disease by improving serum lipids and reducing serum total and low-density lipoprotein (LDL) cholesterol concentrations, (2) decreases the glycaemic index of foods, which leads to an improvement in glycemic response, positive impact on diabetes, (3) protect against development of obesity by increasing satiety hormone leptin concentrations, (4) reduced risk of developing colorectal cancer by normalizes bowel movements, improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, have favorable effects on the gut microbiome, wich is the second genomes of the microorganisms, (5) have a positive impact on the endocrine system by gastrointestinal polypeptide hormonal regulation of digestion, (6) have prebiotic effect by short-chain fatty acids (SCFA) production; butyrate acid is the preferred energy source for colonic epithelial cells, promotes normal cell differentiation and proliferation, and also help regulate sodium and water absorption, and can enhance absorption of calcium and other minerals. Although all prebiotics are fiber, not all fiber is prebiotic. This generally refers to the ability of a fiber to increase the growth of bifidobacteria and lactobacilli, which are beneficial to human health, and (7) play a role in improving immune function via production of SCFAs by increases T helper cells, macrophages, neutrophils, and increased cytotoxic activity of natural killer cells. Conclusion: Fiber consumption is associated with high nutritional value and antioxidant status of the diet, enhancing the effects on human health. Fibers with prebiotic properties can also be recommended as part of fiber intake. Due to the variability of fiber’s effects in the body, it is important to consume fiber from a variety of sources. Increasing fiber consumption for health promotion and disease prevention is a critical public health goal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Macrophage migration inhibitory factor (MIF) has special pro-inflammatory roles, affecting the functions of macrophages and lymphocytes and counter-regulating the effects of glucocorticoids on the immune response. The conspicuous expression of MIF during human implantation and early embryonic development also suggests this factor acts in reproductive functions. The overall goal of this study was to evaluate Mif expression by trophoblast and embryo placental cells during mouse pregnancy. Methods: Mif was immunolocalized at implantation sites on gestation days (gd) 7.5, 10.5, 13.5 and 17.5. Ectoplacental cones and fetal placentas dissected from the maternal tissues were used for Western blotting and qRT-PCR assays on the same gestation days. Results: During the post-implantation period (gd7.5), trophoblast giant cells showed strong Mif reactivity. In later placentation phases (gds 10.5-17.5), Mif appeared to be concentrated in the junctional zone and trophoblast giant cells. Mif protein expression increased significantly from gd7.5 to 10.5 (p = 0.005) and from gd7.5 to 13.5 (p = 0.03), remaining at high concentration as gestation proceeded. Higher mRNA expression was found on gd10.5 and was significantly different from gd13.5 (p = 0.048) and 17.5 (p = 0.009). Conclusions: The up-regulation of Mif on gd10.5 coincides with the stage in which the placenta assumes its three-layered organization (giant cells, spongiotrophoblast and labyrinth zones), fetal blood circulation begins and population of uNK cells reaches high proportions at the maternal counter part of the placenta, suggesting that Mif may play a role in either the placentation or in the adaptation of the differentiated placenta to the uterus or still in gestational immunomodulatory responses. Moreover, it reinforces the possibility of specific activities for Mif at the maternal fetal interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well recognized that zinc is an essential trace element for all organisms, influencing growth and affecting the development and integrity of the immune system. It is also well known that the protective response against Trypanosoma cruzi depends on both innate and acquired immunity and for the control of the parasite load and host survival, the participation of special cells such natural killer (NK), T and B lymphocytes and macrophages are required. So the aims of this study were to evaluate the effects of zinc supplementation on the host`s immune response infected with T cruzi. Our data point in the direction that zinc supplementation triggered enhanced thymocyte and splenocyte proliferation as compared to unsupplied group of animals. It is also important to emphasize that interleukin-12 (IL-12) participates in the resistance to several intracellular pathogens including T cruzi. Our findings demonstrate an enhanced production of IL-12 during the acute phase of infection in zinc-supplied groups. So we conclude that zinc supplementation leads to an effective host`s immune response by up-modulating the host`s immune response, thus contributing in the reduction of blood parasites and the harmful pathogenic effects of the experimental Chagas` disease. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perforin (pfp) and interferon-gamma (IFN-gamma) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-gamma were significantly less proficient than pfp- or IFN-gamma -deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-gamma -deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-gamma appeared to play an early role in protection from metastasis, Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1(+) T cells, Herein, both pfp and IFN-gamma played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells, Further analysis demonstrated that IFN-gamma, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-gamma, and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice, (C) 2001 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perform (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung disease during active human visceral leishmaniasis is frequently reported. As such, studies have associated pulmonary symptoms to interstitial pneumonitis with a mononuclear infiltrate. However, the immune response in this condition has never been described before. The aim of this study was to determine the immunophenotypic pattern and cytokine profile of lung involvement (IPL) in human visceral leishmaniasis. Quantitative methods of analysis were performed using immunohistochemistry, and were compared with a control group of normal lung. Interstitial macrophages and cd8 cells were increased in IPL, and IL-4 as well as TNF-alpha displayed increased expression when compared to the control group. This inflammatory process with a Th2 pattern, as suggested by increased IL-4 and low IFN-gamma expression, is consistent with the immune response in other organs of visceral leishmaniasis. The microenvironment of the immune response in this condition is associated with lung disease in patients with interstitial pneumonitis related to visceral leishmaniasis, increasing the chance of bacterial infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain differences in tissue responses to infection with Candida albicans were examined in nude mice having susceptible (CBA/CaH) and resistant (BALB/c) parentage. Homozygous (nu/nu) mice of both strains were more resistant to systemic infection with C. albicans than heterozygous (nu/+) littermates as indicated by a reduction in both the severity of tissue damage and colony counts in the brain and kidney. However, the tissue lesions in nu/nu CBA/CaH mice were markedly more severe than those in nu/nu mice with the BALB/c background. This pattern was reflected in the greater fungal burden in the CBA/CaH strain. Analysis of cDNA from infected tissues using a competitive polymerase chain reaction excluded interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), and interleukin 6 (IL-6) as mediators of the enhanced resistance of the nude mice. The results confirm that the different patterns of lesion severity in BALB/c and CBA/CaH mice do not involve T lymphocyte-mediated pathology, and are consistent with the hypothesis that strain-dependent tissue damage is not dependent on the effector function of macrophages or their precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: CD8+ T cells and natural killer (NK) cells are involved in the immune response against some pathogens. For this purpose, we investigated the in situ paracoccidioidomycosis (PCM) immune response addressing the participation of NK cells, CD8+ T cells, perforin and granzyme B expression. Methods: Sixty biopsies of PCM skin and mucosa were classified according to the presence of compact granulomas (G1), poorly organized granulomas (G2) and both kinds in the same lesion (G3). CD8+ T cells, NK cells, perforin and granzyme B were showed by immunohistochemistry. Results: CD8+ T cells were increased over NK cells in cutaneous G1 and G2 lesions. There was no difference regarding such cells in G3 lesions, although they were abundant in such lesions. In mucosa, CD8+ T cells were increased in number over NK cells in all groups. Granzyme B in skin increased in G2 and G3. The number of granzyme did not differ in mucosal lesions in the three groups. Conclusions: CD8+ T cells and NK cells play a role in PCM cutaneous and mucosal lesions. The predominance of CD8+ T cells over NK cells may represent an effective response against the fungi. Moreover, the high number of granzyme B expressing cells corroborates this possibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: GH insensitivity (GHI) syndrome caused by STAT5B mutations was recently reported, and it is characterized by extreme short stature and immune dysfunction. Treatment with recombinant human IGF1 (rhIGF1) is approved for patients with GHI, but the growth response to this therapy in patients with STAT5B mutations has not been reported. Objectives: To report the clinical features, molecular findings, and the short-term growth response to rhIGF1 therapy in patients with STAT5B mutation. Subjects and methods: Hormonal and immunological evaluations were performed in two male siblings with GHI associated with atopic eczema, interstitial lung disease, and thrombocytopenic purpura. STAT5B genes were directly sequenced. The younger sibling was treated with rhIGF1 at a dose of 110 mu g/kg BID. Results: Both siblings had laboratory findings compatible with GHI associated with hyperprolactinemia. Lymphopenia and reduced number of natural killer cells without immunoglobulin abnormalities were observed. STAT5B sequence revealed a homozygous frameshift mutation (p.L142fsX161) in both siblings. The younger sibling (9.9 years of age) was treated with rhIGF1 at appropriate dosage, and he did not present any significant change in his growth velocity (from 2.3 to 3.0 cm/year after 1.5 years of therapy). The presence of a chronic illness could possibly be responsible for the poor result of rhIGF1 treatment. Further studies in patients with STAT5B defects are necessary to define the response to rhIGF1 treatment in this disorder. Conclusion: GHI associated with immune dysfunction, especially interstitial lung disease, and hyperprolactinemia is strongly suggestive of a mutation in STAT5B in both sexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aim: Tissue injury leads to activation of coagulation and generation of thrombin. Inhibition of thrombin receptor protease-activated receptor 1 (PAR-1) has been shown to reduce liver fibrosis in animals. This study aimed to evaluate the effect of PAR-1 gene polymorphism on rate of liver fibrosis (RF) in chronic hepatitis C. Methods: Polymorphisms studied: C > T transition 1426 bp upstream of translation start site (-1426C/T), 13 bp repeat of preceding -506 5`-CGGCCGCGGGAAG-3` sequence (-506I/D), and A > T transversion in intervening sequence (IVS) 14 bp upstream of exon-2 start site (IVS-14A/T). A total of 287 European and 90 Brazilian patients were studied. Results: 1426C/T polymorphism: There was a trend to higher RF in patients with the TT genotype (P = 0.06) and an association between genotype CC and slow fibrosis (P = 0.03) in Europeans. In males, RF was significantly higher in those with the TT genotype compared to CT (P = 0.003) and CC (P = 0.007). There was a significant association between TT and fast fibrosis (P = 0.04). This was confirmed in an independent cohort of Brazilians where RF was higher in TT than in CC (P = 0.03). Analysis of -506I/D showed no difference in RF and distribution of slow/fast fibrosis among different genotypes in both populations. Analysis of IVS-14A/T showed no difference between genotypes. Conclusion: In conclusion, these findings suggest that PAR-1 receptor polymorphisms influence the progression of liver fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HLA-G gene is predominantly expressed at the maternal-fetal interface. It has been associated with maternal-fetal tolerance and in the inhibition of cytotoxic T lymphocyte and natural killer cytolytic functions. At least two variations in the 3` untranslated region (UTR) of HLA-G locus are associated with HLA-G expression levels, the 14-bp deletion/insertion polymorphism and the +3142 single-nucleotide polymorphism (SNP). However, this region has not been completely characterized yet. The variability of the 3`UTR of HLA-G gene and its haplotype structure were characterized in 155 individuals from Brazil, as well as HLA-G alleles associated with each of the 3`UTR haplotype. The following eight variation sites were detected: the 14-bp polymorphism and SNPs at the positions +3003T/C, +3010C/G, +3027A/C, +3035C/T, +3142G/C, +3187A/G and +3196C/G. Similarly, 11 different 3`UTR haplotypes were identified and several HLA-G alleles presented only one 3`UTR haplotype. In addition, a high linkage disequilibrium among the variation sites was detected, especially among the 14-bp insertion and the alleles +3142G and +3187A, all previously associated with low mRNA availability, demonstrating that their effects are not independent. The detailed analyses of 3`UTR of the HLA-G locus may shed some light into mechanisms underlying the regulation of HLA-G expression. Genes and Immunity (2010) 11, 134-141; doi: 10.1038/gene.2009.74; published online 1 October 2009