956 resultados para Receptors, Atrial Natriuretic Factor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some fibroblast growth factors (FGFs) affect ovarian follicle cell growth and/or differentiation. Whereas many FGFs activate several FGF receptors, FGF7 and FGF10 primarily activate only one, FGFR2B. As FGF7 is produced by bovine theca cells and acts on granulosa cells, we tested the hypothesis that FGF10 may also play a role in folliculogenesis in cattle. Reverse transcription-polymerase chain reaction demonstrated the presence of FGF10 mRNA in the oocytes and theca cells of the antral follicles, as well as in the preantral follicles. FGF10 protein was detected by immunohistochemistry in the oocytes of the preantral and antral follicles, and in the granulosa and theca cells of the antral follicles. FGF10 expression in theca cells changed during follicle development; mRNA abundance decreased with increasing follicular estradiol concentration in healthy follicles, and was lowest in highly atretic follicles. Culturing of granulosa cells in serum-free medium revealed FSH regulation of FGF10 receptor expression. The addition of FGF10 to cultured granulosa cells decreased the level of estradiol but did not alter cell proliferation. These data support a role for FGF10 in signaling to granulosa cells from theca cells and/or the oocyte.
Resumo:
This study examined the expression of epidermal growth factor (EGF) cell-surface receptors, the response to exogenous ligand and the autocrine production of transforming growth factor a (TGF-a) in normal and carcinoma-derived human oral keratinocytes. One of eight malignant cell lines overexpressed EGF receptors, while the remainder expressed receptor numbers similar to normal cells. Exogenous EGF stimulated incorporation of tritiated thymidine in a dose-dependent manner. In keratinocytes expressing normal numbers of EGF receptors, the cellular response to exogenous EGF correlated positively with total EGF receptor number. SCC-derived keratinocytes produced more TGF-a than normal cells. There was no statistical correlation between the autocrine production of TGF-a, EGF cell-surface receptor expression and cellular response to exogenous EGF. While the growth-stimulatory effects of exogenous TGF-cl were inhibited by the addition of a neutralising antibody, the presence of this antibody in conditioned medium failed to produce a similar decrease in growth. The results indicate that overexpression of EGF receptors is not an invariable characteristic of human oral squamous carcinoma-derived cell lines. Further, the contribution of TGF-a to the growth of normal and carcinoma-derived human oral keratinocytes in vitro may be less significant than previously documented.
Resumo:
We determined the effect of intracerebroventricular (icv) administration of losartan, an angiotensin II (ANG II) subtype 1 receptor (AT1) antagonist, on icv carbachol-induced natriuresis, kaliuresis and antidiuresis in water-loaded male Holtzman rats (250-300 g) with a cannula implanted into the lateral ventricle (LV). The rats were water loaded with 5% of their body weight by gavage twice, with the second gavage one hour after the first. Carbachol (2 nmol in 1 mu l) was injected icv immediately after the second load. When losartan (DUP-753, 50 nmol in 1 mu l) was administered icv, it was given 3 min before carbachol. Previous icv treatment with losartan significantly reduced the icv carbachol-induced natriuresis (324 +/- 17 mu Eq/120 min), kaliuresis (103 +/- 15 mu Eq/120 min) and antidiuresis (13.5 +/- 2.1 ml/120 min) compared to the effects of previous icv injection of saline (Nai excretion = 498 +/- 22 mu Eq/120 min; K+ excretion = 167 +/- 20 mu Eq/120 min; urine volume = 5.2 +/- 1.2 ml/120 min). These results, reported as means +/- SEM for 12 rats in each group, are consistent with the hypothesis that AT1 subtype receptors participate in the regulation of body electrolyte balance.
Resumo:
Rat isolated right atria obtained 1 wk after sinoaortic denervation were less sensitive to the chronotropic actions of beta-agonists than were tissues obtained from animals that underwent sham surgery or no surgery at all. The potencies, but not the maximal responses for two high efficacy agonists, norepinephrine and isoproterenol, were reduced about 3- to 4-fold. Sinoaortic denervation (SAD) caused about a 3-fold decrease in potency and about a 60% decrease in maximal response for a low efficacy agonist, prenalterol. The changes in the actions of these agonists occurred in the absence of any changes in the subtype of beta receptor mediating the chronotropic response. The results of analyses of the data for prenalterol showed that SAD caused a decrease in the operational efficacy of this agonist without any changes in its K-D value for beta-1 adrenoceptors. SAD had no effect on the responses of the tissue to blockade of uptake 1 and uptake 2, suggesting no compensatory changes in the removal processes caused the decreased potency. The results of radioligand binding assays showed that SAD caused a decrease in the maximal binding of I-125-cyanopindolol without altering its K-D. Also, the results of competition binding assays confirmed the lack of effect of SAD on the K-D for prenalterol. The SAD-induced changes in the actions of agonists acting at right atrial beta-1 receptors were caused by a down-regulation of beta-1 adrenoceptors, which probably occurred in response to SAD-induced increases in sympathetic tone.
Resumo:
Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study investigates the participation and interaction between cholinergic and opiate receptors of the medial septal area (MSA) in the regulation of Na+, K+ and water excretion, drinking and blood pressure regulation. Male Holtzman rats were implanted with stainless steel cannulae opening into the MSA. Na+, K+ and water excretion, water intake and blood pressure were measured after injection of carbachol (cholinergic agonist), FK-33824 (an opiate agonist) + carbachol or naloxone (an opiate antagonist) + carbachol into MSA. Carbachol (0.5 or 2.0 nmol) induced an increase in Na+ and K+ excretion, water intake and blood pressure and reduced the urinary volume. FK-33824 reduced the urinary volume and Na+ and K+ excretion. Previous injection of FK-33824 (100 ng) into the MSA blocked the increases in Na+ and K+ excretion, water intake and blood pressure induced by carbachol. Naloxone (10 μg) produced no changes in the effect of 2.0 nmol carbachol, but potentiated the natriuretic effect induced by 0.5 nmol dose of carbachol. These data show an inhibitory effect of opiate receptors on the changes in cardiovascular, fluid and electrolyte balance induced by cholinergic stimulation of the MSA in rats. © 1992.
Resumo:
The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target ofTNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response. © 2011 Carvalho-Sousa, da Silveira Cruz-Machado, Tamura, Fernandes, Pinato, Muxel, Cecon and Markus.
Resumo:
In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.
VEGF-C expression in oral cancer by neurotransmitter-induced activation of beta-adrenergic receptors
Resumo:
The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μM of propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p > 0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production. © 2012 International Society of Oncology and BioMarkers (ISOBM).
Resumo:
Aims: To evaluate the reliability of fine needle aspirate cell blocks in the assessment of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins by immunohistochemistry in comparison with surgical specimens. Materials and methods: This is a retrospective study of 62 cases of breast carcinoma diagnosed by fine needle aspiration cytology (FNAC) and confirmed using the surgical specimen. Immunohistochemical tests were performed to assess the presence of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins in cell blocks and the corresponding surgical specimens. The cell block method used alcohol prior to formalin fixation. Cases with 10% or more stained cells were considered positive for ER and PR. Positivity for HER-2/neu was assessed on a scale of 0-3+. The criterion for positivity was a score of 3+. Results: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of the cell blocks in the investigation of ER, PR and HER-2/neu protein (3+) were (%): ER, 92.7, 85.7, 92.7, 85.7 and 90.3; PR, 92.7, 94.7, 97.4, 87.0 and 93.5; HER-2/neu, 70.0, 100.0, 100.0, 94.5 and 95.2. Discrepancies were seen in cell blocks in the 1+ and 2+ HER-2/neu staining scores: two of 12 cases scoring 2+ and one case of 26 scoring 1+ on cell blocks scored 3+ on surgical specimens. The correlation index between cell block and corresponding surgical specimen varied from 90% to 94%. Conclusion: Cell blocks provide a useful method of assessing ER, PR and HER-2/neu, mainly for inoperable and recurrent cases, but consideration should be given to carrying out FISH analysis on 1+ as well as 2+ HER-2/neu results. © 2012 Blackwell Publishing Ltd.
Resumo:
Background: Chronic inflammation and gastric carcinogenesis show a close association, so gene polymorphisms that modify the intensity of the inflammatory response may contribute to variations in gastric cancer risk. Aims: The purpose of this study was to investigate the combined effect of the pro- and anti-inflammatory cytokines and toll-like receptors polymorphisms on the chronic gastritis and gastric cancer risk in a Brazilian population sample. Methods: We evaluated 669 DNA samples (200 of gastric cancer [GC], 229 of chronic gastritis [CG], and 240 of healthy individuals [C]). Ten polymorphisms were genotyped: IL-1RN and TLR2 -196 to -174 del using the allele-specific PCR method and TNF-A (rs1800629; rs1799724), TNF-B (rs909253), IL-8 (rs4073; rs2227532), IL-10 (rs1800872) and TLR4 (rs4986790; rs4986791) using PCR-RFLP. Results: Polymorphisms TNF-A-308G/A, IL-8-251A/T, TNF-B + 252A/G and TLR4 + 1196C/T were not associated with risk of any gastric lesion. However, an association with increased risk for GC was observed for polymorphisms IL-1RNL/2 (p < 0.001), TNF-A-857C/T (p = 0.022), IL-8-845T/C (p < 0.001), IL-10-592C/A (p < 0.001), TLR2ins/del (p < 0.001), and TLR4 + 896A/G (p = 0.033). In CG, an association was observed only with polymorphisms IL-1RNL/2 and IL-10-592A/C (p < 0.001 for both). A combined analysis of these six polymorphisms associated with GC revealed a profile with two to four combined genotypes which confer a higher risk of gastric carcinogenesis, with an OR increased 2.95-fold to 50.4-fold, highlighting the combinations IL-1RN2/TNF-A-857T/IL-8-845C, IL-1RN2/IL-8-845C/TLR2del, IL-1RN2/IL-10-592A/TLR4 + 896G, IL-10-592A/TLR2del/ TLR4 + 896G, and IL-1RN2/TNFA-857T/IL8-845C/TLR2del. Conclusions: Our findings evidenced that the combined effect of polymorphisms in genes involved in the inflammatory process may potentiate the risk of gastric cancer, thus emphasizing the importance of evaluating multiple polymorphisms together. © 2012 Springer Science+Business Media New York.
Resumo:
Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzymelinked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.
Resumo:
Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.