973 resultados para Reator tubular


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Renal tubular sodium handling was measured in healthy subjects submitted to acute and chronic salt-repletion/salt-depletion protocols. The goal was to compare the changes in proximal and distal sodium handling induced by the two procedures using the lithium clearance technique. METHODS: In nine subjects, acute salt loading was obtained with a 2 h infusion of isotonic saline, and salt depletion was induced with a low-salt diet and furosemide. In the chronic protocol, 15 subjects randomly received a low-, a regular- and a high-sodium diet for 1 week. In both protocols, renal and systemic haemodynamics and urinary electrolyte excretion were measured after an acute water load. In the chronic study, sodium handling was also determined, based on 12 h day- and night-time urine collections. RESULTS: The acute and chronic protocols induced comparable changes in sodium excretion, renal haemodynamics and hormonal responses. Yet, the relative contribution of the proximal and distal nephrons to sodium excretion in response to salt loading and depletion differed in the two protocols. Acutely, subjects appeared to regulate sodium balance mainly by the distal nephron, with little contribution of the proximal tubule. In contrast, in the chronic protocol, changes in sodium reabsorption could be measured both in the proximal and distal nephrons. Acute water loading was an important confounding factor which increased sodium excretion by reducing proximal sodium reabsorption. This interference of water was particularly marked in salt-depleted subjects. CONCLUSION: Acute and chronic salt loading/salt depletion protocols investigate different renal mechanisms of control of sodium balance. The endogenous lithium clearance technique is a reliable method to assess proximal sodium reabsorption in humans. However, to investigate sodium handling in diseases such as hypertension, lithium should be measured preferably on 24 h or overnight urine collections to avoid the confounding influence of water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The stimulation of efferent renal sympathetic nerve activity induces sequential changes in renin secretion, sodium excretion, and renal hemodynamics that are proportional to the magnitude of the stimulation of sympathetic nerves. This study in men investigated the sequence of the changes in proximal and distal renal sodium handling, renal and systemic hemodynamics, as well as the hormonal profile occurring during a sustained activation of the sympathetic nervous system induced by various levels of lower body negative pressure (LBNP). METHODS: Ten healthy subjects were submitted to three levels of LBNP ranging between 0 and -22.5 mm Hg for one hour according to a triple crossover design, with a minimum of five days between each level of LBNP. Systemic and renal hemodynamics, renal water and sodium handling (using the endogenous lithium clearance technique), and the neurohormonal profile were measured before, during, and after LBNP. RESULTS: LBNP (0 to -22.5 mm Hg) induced an important hormonal response characterized by a significant stimulation of the sympathetic nervous system and gradual activations of the vasopressin and the renin-angiotensin systems. LBNP also gradually reduced water excretion and increased urinary osmolality. A significant decrease in sodium excretion was apparent only at -22.5 mm Hg. It was independent of any change in the glomerular filtration rate and was mediated essentially by an increased sodium reabsorption in the proximal tubule (a significant decrease in lithium clearance, P < 0.05). No significant change in renal hemodynamics was found at the tested levels of LBNP. As observed experimentally, there appeared to be a clear sequence of responses to LBNP, the neurohormonal response occurring before the changes in water and sodium excretion, these latter preceding any change in renal hemodynamics. CONCLUSIONS: These data show that the renal sodium retention developing during LBNP, and thus sympathetic nervous stimulation, is due mainly to an increase in sodium reabsorption by the proximal segments of the nephron. Our results in humans also confirm that, depending on its magnitude, LBNP leads to a step-by-step activation of neurohormonal, renal tubular, and renal hemodynamic responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of glucosuria in the absence of hyperglycemia is distinctive for renal glucosuria. SGLT2 mutations provoke familial renal glucosuria characterized by persistent glucosuria in the absence of any other renal tubular dysfunction. Renal glucosuria associated with others proximal tubular dysfunctions points to Fanconi syndrome. This generalized dysfunction of proximal tubule needs to be treated and may progress regarding its aetiology to chronic renal failure. The development and study of models of Fanconi syndrome has recently contributed to a better knowledge of the mechanisms implicated in the tubular transport of glucose and low-molecular-weight-proteins. This article reviews these recent developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report four patients who presented with a severe form of metaphyseal chondromatosis in association with D-2-hydroxyglutaric aciduria (D-2-HGA). All patients showed splaying columns of irregular ossification defects with bulbous metaphyses of the long tubular bones, as well as remarkable involvement of the short tubular and flat bones. The vertebral bodies revealed platyspondyly with irregular, stippled endplates. D-2-HGA has been described as a neurometabolic disorder manifesting a broad range of impairment in mental and motor development. Although hydroxyglutaric acid was excreted in high amounts in the urine of all four patients described herein, no significant neurologic abnormalities were evident. This unusual combination of characteristic skeletal and metabolic abnormalities has rarely been reported. Thus, our report will facilitate the recognition of this distinctive entity, and we suggest that a urine organic acid screening be obtained in patients who present with generalized enchondromatosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Memantine, a frequently prescribed anti-dementia drug, is mainly eliminated unchanged by the kidneys, partly via tubular secretion. Considerable inter-individual variability in plasma concentrations has been reported. We aimed to investigate clinical and genetic factors influencing memantine disposition. METHODS: A population pharmacokinetic study was performed including data from 108 patients recruited in a naturalistic setting. Patients were genotyped for common polymorphisms in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1) and nuclear receptors (NR1I2, NR1I3, RXR, PPAR) involved in transporter expression. RESULTS: The average clearance was 5.2 L/h with a 27 % inter-individual variability (percentage coefficient of variation). Glomerular filtration rate (p = 0.007) and sex (p = 0.001) markedly influenced memantine clearance. NR1I2 rs1523130 was identified as the unique significant genetic covariate for memantine clearance (p = 0.006), with carriers of the NR1I2 rs1523130 CT/TT genotypes presenting a 16 % slower memantine elimination than carriers of the CC genotype. CONCLUSION: The better understanding of inter-individual variability of memantine disposition might be beneficial in the context of individual dose optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: The antihypertensive effect of renal denervation in hypertensive patients is partially explained by increased tubular natriuresis. To study the possible contribution of the kallikrein-kinin system (KKS) to this natriuretic effect in rats, we measured kallikrein activity (KA) and bradykinin concentrations (BK) in plasma and tissues. METHODS: To measure KA, we adapted and validated an enzymatic assay that cleaves para-nitroaniline (pNA) from the tripeptide H-D-Pro-Phe-Arg-pNA. The coefficients of variation (CV) within- and between-assays were less than 8% for plasma and tissue KA (plasma n=6 and 13; tissue n=4). Linear results for serially diluted samples confirmed the assay specificity. Tissue BK determinations were based on an established assay for plasma BK: tissue was homogenized and kinins extracted in ethanol, and BK was isolated by high-performance (HPLC) liquid chromatography and quantitated by radioimmunassay. Within- and between-assay CV for plasma BK were 18% (n=8 and n=35, respectively) and for BK in various tissues less than 16% (n=5-8). RESULTS: In male Wistar rats (n=3), plasma BK was 8.2±6.6 fmol/mL (mean±SD), and tissue BK (fmol/g) in 14 tested organs varied between brain (14±3) and submaxillary gland (521±315). Six days after left-sided unilateral renal denervation, left renal tissue BK (89±9) was not different from right renal BK (75±23). Similarly, KA was comparable in the two kidneys (left 18.0±1.5, right 15.8±1.4μkat/g). CONCLUSION: Any possible effect of unilateral renal denervation on the kidney's KKS would have to be bilateral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant proteinuria is not an unfinding in children. Its causes are variable. When detected by dipstick examination of urine, the proteinuria must be assessed quantitatively by measuring the urinary protein/creatinine ratio in a spot sample. Orthostatic proteinuria is the most common cause of intermittent proteinuria. Persistent glomerular or tubular proteinuria are the consequences of various glomerulopathies or tubulopathies, the prognosis of which is variable. Whether glomerular or tubular, persistent proteinuria must be fully investigated, including by renal biopsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5-phosphatase in mice and cells overexpressing the 42-kDa mouse Inpp5k protein. Inpp5k transgenic mice present defects in water metabolism characterized by a reduced plasma osmolality at baseline, a delayed urinary water excretion following a water load, and an increased acute response to vasopressin. These defects are associated with the expression of the Inpp5k transgene in renal collecting ducts and with alterations in the arginine vasopressin/aquaporin-2 signalling pathway in this tubular segment. Analysis in a mouse collecting duct mCCD cell line revealed that Inpp5k overexpression leads to increased expression of the arginine vasopressin receptor type 2 and increased cAMP response to arginine vasopressin, providing a basis for increased aquaporin-2 expression and plasma membrane localization with increased osmotically induced water transport. Altogether, our results indicate that Inpp5k 5-phosphatase is important for the control of the arginine vasopressin/aquaporin-2 signalling pathway and water transport in kidney collecting ducts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study was to characterize the cell damage mechanisms involved in the pathophysiology of cytotoxicity of polymyxin B in proximal tubular cells (LLC - PK1) and discuss about the nurses interventions to identify at risk patients and consider prevention or treatment of nephrotoxicity acute kidney injury. This is a quantitative experimental in vitro study, in which the cells were exposed to 375μM polymyxin B sulfate concentration. Cell viability was determined by exclusion of fluorescent dyes and morphological method with visualization of apoptotic bodies for fluorescence microscopy. Cells exposed to polymyxin B showed reduced viability, increased number of apoptotic cells and a higher concentration of the enzyme lactate dehydrogenase. The administration of polymyxin B in vitro showed the need for actions to minimize adverse effects such as nephrotoxicity.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peter Karlson and Martin Lüscher used the term pheromone for the first time in 1959 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules secreted and/or contained in biological fluids, such as urine, a liquid known to be a main source of pheromones. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions, hierarchical organisations and sexual interactions and are consequently directly correlated with the survival of a given species. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO), a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs). Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize. Two main vomeronasal receptor families, V1Rs and V2Rs, are composed respectively by 240 and 120 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs) and formyl peptide receptors (FPRs) are also expressed in VSNs. Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons TRPC2 independent transduction channels have been suggested. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex. Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO Objetivo Avaliar ação renoprotetora dos flavonoides diosmina e hesperidina na prevenção da nefrotoxicidade da anfotericina B em modelo experimental com ratos. Método Ratos Wistar, adultos, machos foram distribuídos nos seguintes grupos: Salina; diosmina hesperidina (animais receberam 50 mg/kg de diosmina hesperidina em água de bebedouro por dez dias); Anfotericina B (animais receberam 15 mg/kg/dia de anfotericina B intraperitoneal por cinco dias); Anfotericina B+diosmina hesperidina. Foram avaliados função renal, fração de excreção de sódio, potássio e magnésio e os metabólitos oxidativos. Resultados O tratamento com anfotericina B reduziu a função renal, vista peloclearance de creatinina, elevou os marcadores de função tubular como a fração de excreção de sódio, potássio, magnésio e dos metabólitos oxidativos. O pré-condicionamento com diosmina hesperidina elevou o clearance de creatinina e atenuou da lesão tubular e oxidativa. Conclusão A administração de anfotericina B resultou no declínio da função renal com lesão tubular e a diosmina hesperidina demonstrou efeito renoprotetor antioxidante.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HNF1B (Hepatocyte Nuclear Factor 1-B localizado en el cromosoma 17q21.3) es un factor de transcripción con un papel fundamental en los primeros estadios del desarrollo y en la organogénesis de diferentes tejidos como el renal, hepático, pancreático o genital. Las mutaciones de este gen se heredan con un patrón autosómico dominante. A nivel renal acostumbran a haber alteraciones morfológicas y grados variables de afectación tubular. A nivel extrarenal se ha relacionado con la diabetes tipo MODY, malformaciones genitales o alteraciones hepáticas. La gran variabilidad de formas de presentación hace que la sospecha clínica resulte en muchas ocasiones dificultosa. En el presente estudio, se realiza una descripción clínica y génètica de los pacientes identificados en nuestro centro con mutación en el gen HNF1b. Observamos, en consonancia con lo descrito en la literatura, una gran variabilidad interfamiliar y intrafamiliar, así como una ausencia de relación fenotipo-genotipo en cuanto la forma de presentación o evolución de la enfermedad. Se recomienda el estudio de HNF1b en pacientes pediátricos o adultos con patología estructural renal, especialmente si se asocia a diabetes tipo MODY, malformaciones genitales, hipomagnesemia, hiperuricemia o antecedentes familiares de nefropatía.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ervas anuais ou perenes, escandentes, trepadoras ou prostradas, com gavinhas, raramente ervas erectas sem gavinhas. Folhas alternas, palminerveas, simples ou pedadamente compostas. Gavinhas distalmente 2-fidas ou proximalmente 2-7-fidas, raras vezes reduzidas a espinhos ou ausentes, em geral urna por nó. Flores unissexuadas, monóicas ou dióicas, axilares, diversamente dispostas, as Q geralmente solitarias. Probrácteas por vezes presentes na base dos pedúnculos. Tubo-receptáculo (hipanto) curto a tubular, em geral -i-lobado, lobos geralmente pequenos. Pétalas em geral 5, livres ou diversamente unidas, corola na maioria dos casos regular. Androceu basicamente com 5 estames, diversamente modificado, em geral com 2 duplos estames e 1 estame simples, livres ou f unidos; tecas das anteras frequentemente convolutas; estaminódios com frequência presentes nas flores Q. Ovário ínfero, 1-locular ou por vezes 34ocular, geralmente formado a partir de 3 carpelos unidos; placentacão parietal, raramente axilar, placentas com frequência intrusivas; óvulos anatrópicos, horizontais, pêndulos ou ascendentes; estilete 1, com 2 ou geralmente 3 lobos estigmáticos. ou 3 estiletes. Fruto seco ou carnudo, cápsula, baga ou pepónio de casca dura, diversamente deiscente ou indeiscente, I -polispérmico, raras vezes tuna sâmara 1-spérmica. Sementes frequentemente achatadas, por vezex aladas: embrião grande; endosperma ausente. Familia pantropical de cerca de 600 espécies, algumas economicamente importantes como plantas alimenticias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Sodium wasting during the night has been postulated as a potential pathophysiological mechanism in patients suffering from orthostatic hypotension due to severe autonomic deficiency. METHODS: In this study, the diurnal variations in creatinine clearance, sodium excretion and segmental renal tubular handling of sodium were evaluated in 18 healthy subjects and 20 young patients with orthostatic hypotension (OH). In addition, 24-hour ambulatory blood pressure and the neuro-hormonal response to changes in posture were determined. The patients and their controls were studied on a free sodium intake. In a second protocol, 10 controls and 10 patients were similarly investigated after one week of a high salt diet (regular diet + 6 g NaCl/day). RESULTS: Our results demonstrate that, in contrast to normal subjects in whom no significant changes in glomerular filtration, sodium excretion and segmental sodium reabsorption were observed throughout the day, patients with OH were characterized by a significant increase in glomerular filtration rate during the nighttime (P = 0.03) and significant increases in urinary lithium excretion (P < 0.05) and lithium clearance (P = 0.05) during the night, suggesting a decreased proximal reabsorption of sodium. On a high sodium diet, the symptoms of orthostatic hypotension and the circadian variations in sodium reabsorption were significantly blunted. CONCLUSIONS: These results suggest that, while the patient is in a supine position the effective blood volume of those with OH becomes excessive due to the increased venous return. Hence, the kidney responds with an increase in glomerular filtration and a relative escape of sodium from the proximal tubular segments. These circadian variations in renal sodium handling may contribute to the maintenance of the orthostatic syndrome.