969 resultados para Reactor shutdowns


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated Ocean sediments and seawater from inside the Fukushima exclusion zone and found radiocesium (134Cs and 137Cs) up to 800 Bq kg-1 as well as 90Sr up to 5.6 Bq kg-1. This is one of the first reports on radiostrontium in sea sediments from the Fukushima exclusion zone. Seawater exhibited contamination levels up to 5.3 Bq kg-1 radiocesium. Tap water from Tokyo from weeks after the accident exhibited detectable but harmless activities of radiocesium (well below the regulatory limit). Analysis of the Unit 5 reactor coolant (finding only 3H and even low 129I) leads to the conclusion that the purification techniques for reactor coolant employed at Fukushima Daiichi are very effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) represent a large class of persistent organic pollutants in an environment of special concern because they have carcinogenic and mutagenic activity. In this paper, we focus on and discuss the effect of different parameters, for instance, initial concentration of Anthracene, temperature, and light intensity, on the degradation rate. These parameters were adjusted at pH 6.8 in the presence of the semiconductor materials (TiO2) as photocatalysts overUVlight. The main product of Anthracene photodegradation is 9,10-Anthraquinone which isidentified and compared with the standard compound by GC-MS. Our results indicate that the optimum conditions for the best rate of degradation are 25 ppm concentration of Anthracene, regulating the reaction vessel at 308.15 K and 2.5 mW/cm(2) of light intensity at 17 5mg/100 mL of titanium dioxide (P25).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La actividad industrial y el desarrollo material y económico, han traído como consecuencia la contaminación del aire, agua y el suelo; lo que ocasiona modificaciones físicas químicas y biológicas que han producido un deterioro en la calidad del agua, dando como resultado problemas de contaminación que afectan tanto la productividad de los sistemas como la salud humana. A las aguas de composición variada provenientes de uso municipal, industrial, comercial, agrícola, pecuario, o de cualquier otra índole, ya sea privada o pública que han sufrido una degradación o alteración en su calidad original se le conoce como agua residual. Este trabajo tiene como objetivo “Caracterizar las bacterias filamentosas en el funcionamiento de un reactor aerobio de la planta de tratamiento de aguas residuales de origen cervecero” para ello se estudió durante varios meses los parámetros físico-químicos y biológicos para poder así controlar de las bacterias filamentosas y así evitar en un futuro problemas de operación o poder controlar su crecimiento y por ende, ecológicos dentro del sistema de lodos activados. La identificación se realizó tomando muestras en el reactor aerobio y realizándole la tinción de Gram para posteriormente ser vistos en un microscopio de una resolución de 100x; luego se caracterizaron las bacterias juntas con los parámetros de operación del tanque de lodos por muestra y los resultados encontrados fueron la presencia de filamentos Microtrix Parvicella, Tipo 021N, y Sp1 (llamada así por no ser identificada, ni encontrada en la literatura), esta es una nueva especie encontrada, ya que es propia de este reactor aerobio y crecen principalmente en aguas cerveceras y por deficiencia de nutrientes en el sistema. Este trabajo nos permitió conocer la dinámica que existe entre los parámetros fisicoquímicos y los microorganismos que se encuentran en un biorreactor Aerobio. Esto nos llevó a comprender mejor el funcionamiento de estos sistemas dentro de plantas de aguas residuales de tipo industrial. ABSTRACT Industrial activity and the physical and economic development have resulted in contamination of air, water and soil, causing physical chemical and biological changes that have produced deterioration in water quality, resulting in pollution problems affects the productivity of the systems and human health. A varied composition waters from municipal, industrial, commercial, agricultural, livestock, or any other use, whether private or public who have suffered a degradation or alteration in their original quality is known as residual water. This work aims to "characterize filamentous bacteria in the operation of an aerobic reactor plant wastewater treatment brewer origin" for this physicochemical and biological parameters were studied for several months to thereby control bacteria stringy and avoid future problems in operation or to control their growth and thus ecological This work aims to "characterize filamentous bacteria in the operation of an aerobic reactor plant wastewater treatment brewer origin" for this physicochemical and biological parameters were studied for several months to thereby control bacteria stringy and avoid future problems in operation or to control their growth and thus ecological within the activated sludge system. This work allowed us to understand the dynamics between physicochemical parameters and microorganisms found in an aerobic bioreactor. This led us to better understand the operation of these systems within plants industrial wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH3 maldistribution and aging effects, and the details are presented. SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model. The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6. A combined engine experimental and simulation study was performed to quantify the NH3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH3 maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data. The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments.