928 resultados para Raman spectroscopy, hidalgoite, arsenate contamination, arsenic in cattle dips, soil remediation
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
This study evaluated the use of Raman spectroscopy to identify the spectral differences between normal (N), benign hyperplasia (BPH) and adenocarcinoma (CaP) in fragments of prostate biopsies in vitro with the aim of developing a spectral diagnostic model for tissue classification. A dispersive Raman spectrometer was used with 830 nm wavelength and 80 mW excitation. Following Raman data collection and tissue histopathology (48 fragments diagnosed as N, 43 as BPH and 14 as CaP), two diagnostic models were developed in order to extract diagnostic information: the first using PCA and Mahalanobis analysis techniques and the second one a simplified biochemical model based on spectral features of cholesterol, collagen, smooth muscle cell and adipocyte. Spectral differences between N, BPH and CaP tissues, were observed mainly in the Raman bands associated with proteins, lipids, nucleic and amino acids. The PCA diagnostic model showed a sensitivity and specificity of 100%, which indicates the ability of PCA and Mahalanobis distance techniques to classify tissue changes in vitro. Also, it was found that the relative amount of collagen decreased while the amount of cholesterol and adipocyte increased with severity of the disease. Smooth muscle cell increased in BPH tissue. These characteristics were used for diagnostic purposes.
Resumo:
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Resumo:
A sensitive method using HPLC with fluorescence detection has been established for the measurement of porphyrins in biological materials. The assay recoveries were 88.0 +/- 1.8% for protoporphyrin IX in the blood, and ranged from 98.3 +/- 2.7% to 111.1 +/- 7.4% for various porphyrins in the urine. This method was employed to investigate the altered porphyrin profiles in rats after a single dose of various arsenicals including soluble sodium arsenate and sodium arsenite, and the relatively insoluble calcium arsenite, calcium arsenate and arsenic-contaminated soils at dose rates of 5 mg/kg or 0.5 mg/kg body weight. Porphyrin concentrations increased within 24-48hr after the arsenic treatment in blood and urine. Protoporphyrin IX is the predominant porphyrin in the blood. In rats administered 5 mg As(III)/kg body weight, protoporphyrin IX concentration elevated to 123% of them control values in rats, 24 hr after the treatment. Higher increases were recorded in the urinary protoporphyrin IX (253% at 24 hr; 397% on day 2), uroporphyrin (121% at 24 hr; 208% on day 2) and coproporphyrin 111 (391% at 24 hr; 304% on day 2), while there was no significant increase (109% on day 3) observed in the urinary coproporphyrin I excretion. In rats administered 5 mg As(V)/kg, urinary excretion of protoporphyrin IX, uroporphyrin, coproporphyrin Ill and coproporphyrin I elevated to the maximum levels by 48 hr with the corresponding percentage values compared to the control being 177%, 158%, 224% and 143%, respectively. In rats dosed with 5 mg As(III)/kg, the increases (expressed as % of the control values) of protoporphyrin IX in the blood were in the order: sodium arsenite (144%) > sodium arsenate (125%) greater than or equal to calcium arsenite (123%) > calcium arsenate. In contrast, there was no significant increase of protoporphyrin K when the six arsenic-contaminated cattlei dip soils and nine copper chrome arsenate (CCA-contaminated) soils were administered to the rats. Probable explanations are discussed.
Resumo:
A transportable Raman spectrometer was tested for the detection of illicit drugs seized during border controls. In a first step, the analysis methodology was optimized using reference substances such as diacetylmorphine (heroin), cocaine and amphetamine (as powder or liquid forms). Adequate focalisation distance and times of analysis, influence of daylight and artificial light sources, repeatability and limits of detection were studied. In a second step the applications and limitations of the technique to detect the illicit substances in different mixtures and containers was evaluated. Transportable Raman spectroscopy was found to be adequate for a rapid screen of liquids and powders for the detection and identification of controlled substances. Additionally, it had the advantage over other portable techniques, such as ion mobility spectrometry, of being non-destructive and capable of rapid analysis of large quantities of substances through containers such as plastic bags and glass bottles.
Resumo:
Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.
Resumo:
Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
Raman spectroscopy has been used by fluid inclusionists to: 1) identify and quantitatively determine the relative abundances of gaseous species within fluid inclusions; 2) identify solid phases precipitating from, or accidentally trapped, within fluid inclusions; and 3) determine the detection limits of the C-13/C-12 ratio in the CO2 bearing phase of fluid inclusions.
Resumo:
In this work annealing and growth of CuInS2 thin films is investigated with quasireal-time in situ Raman spectroscopy. During the annealing a shift of the Raman A1 mode towards lower wave numbers with increasing temperature is observed. A linear temperature dependence of the phonon branch of ¿2 cm¿1/100 K is evaluated. The investigation of the growth process (sulfurization of metallic precursors) with high surface sensitivity reveals the occurrence of phases which are not detected with bulk sensitive methods. This allows a detailed insight in the formation of the CuInS2 phases. Independent from stoichiometry and doping of the starting precursors the CuAu ordering of CuInS2 initially forms as the dominating ordering. The transformation of the CuAu ordering into the chalcopyrite one is, in contrast, strongly dependent on the precursor composition and requires high temperatures.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.
Resumo:
Raman and electronic spectra of the [3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionate] dianion, the croconate violet (CV), are reported in solutions of ionic liquids based on imidazolium cations. Different normal modes of the CV anion, nu (C=O), nu (CO) + nu (CC) + nu (CCN), and nu(C N), were used as probes of solvation characteristics of ionic liquids, and were compared with spectra of CV in common solvents. The spectra of CV in ionic liquids are similar to those in dichloromethane solution, but distinct from those in protic solvents such as ethanol or water. The UV-vis spectra of CV in ionic liquids strongly suggest pi-pi interactions between the CV anion and the imidazolium cation. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Raman spectra of dilute solutions of acetonitrile in ionic liquids reveal the characteristic features of ionic liquids` polarity. This is accomplished by investigating the Raman bandshape of the nu (CN) band, corresponding to the CN stretching mode of CH(3)CN, which is a very sensitive probe of the local environment. The amphiphilic nature of the CH(3)CN molecule allows us to observe the effect of electron pair acceptor and electron pair donor characteristics on ionic liquids. It has been found that the overall polarity of nine different ionic liquids based on 1-alkyl-3-methylimidazolium cations is more dependent on the anion than cation. The observed wavenumber shift of the nu (CN) band of CH(3)CN in ionic liquids containing alkylsulfate anions agrees with the significant different values previously measured for the dielectric constant of these ionic liquids. The conclusions obtained from the analysis of the nu (CN) band were corroborated by the analysis of the symmetric nu(1) (CD(3)) stretching mode of deuterated acetonitrile in different ionic liquids. Copyright (C) 2010 John Wiley & Sons, Ltd.