927 resultados para Railway scheduling
Resumo:
This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.
Resumo:
In this paper, short term hydroelectric scheduling is formulated as a network flow optimization model and solved by interior point methods. The primal-dual and predictor-corrector versions of such interior point methods are developed and the resulting matrix structure is explored. This structure leads to very fast iterations since it avoids computation and factorization of impedance matrices. For each time interval, the linear algebra reduces to the solution of two linear systems, either to the number of buses or to the number of independent loops. Either matrix is invariant and can be factored off-line. As a consequence of such matrix manipulations, a linear system which changes at each iteration has to be solved, although its size is reduced to the number of generating units and is not a function of time intervals. These methods were applied to IEEE and Brazilian power systems, and numerical results were obtained using a MATLAB implementation. Both interior point methods proved to be robust and achieved fast convergence for all instances tested. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A lot sizing and scheduling problem from a foundry is considered in which key materials are produced and then transformed into many products on a single machine. A mixed integer programming (MIP) model is developed, taking into account sequence-dependent setup costs and times, and then adapted for rolling horizon use. A relax-and-fix (RF) solution heuristic is proposed and computationally tested against a high-performance MIP solver. Three variants of local search are also developed to improve the RF method and tested. Finally the solutions are compared with those currently practiced at the foundry.
Resumo:
Minimizing the makespan of a flow-shop no-wait (FSNW) schedule where the processing times are randomly distributed is an important NP-Complete Combinatorial Optimization Problem. In spite of this, it can be found only in very few papers in the literature. By considering the Start Interval Concept, this problem can be formulated, in a practical way, in function of the probability of the success in preserve FSNW constraints for all tasks execution. With this formulation, for the particular case with 3 machines, this paper presents different heuristics solutions: by integrating local optimization steps with insertion procedures and by using genetic algorithms for search the solution space. Computational results and performance evaluations are commented. Copyright (C) 1998 IFAC.
Resumo:
This paper proposes a methodology to incorporate voltage/reactive representation to Short Term Generation Scheduling (STGS) models, which is based on active/reactive decoupling characteristics of power systems. In such approach STGS is decoupled in both Active (AGS) and Reactive (RGS) Generation Scheduling models. AGS model establishes an initial active generation scheduling through a traditional dispatch model. The scheduling proposed by AGS model is evaluated from the voltage/reactive points of view, through the proposed RGS model. RGS is formulated as a sequence of T nonlinear OPF problems, solved separately but taking into account load tracking between consecutive time intervals. This approach considerably reduces computational effort to perform the reactive analysis of the RGS problem as a whole. When necessary, RGS model is capable to propose active generation redispatches, such that critical reactive problems (in which all reactive variables have been insufficient to control the reactive problems) can be overcome. The formulation and solution methodology proposed are evaluated in the IEEE30 system in two case studies. These studies show that the methodology is robust enough to incorporate reactive aspects to STGS problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Within a weekly market horizon, this paper considers a power producer that sells its energy both in the pool and through weekly forward contracts. The paper provides a methodology that allows the producer to derive the self-scheduling of its production units, to select weekly forward contracts, and to obtain the offering strategy for Monday's pool. The proposed technique is based on stochastic programming and allows the producer to maximize its expected profit while controlling the risk of profit variability. A comprehensive case study is used to illustrate the characteristics of the proposed methodology. Appropriate conclusions are finally drawn.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This chapter studies a two-level production planning problem where, on each level, a lot sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times must be solved. The problem can be found in soft drink companies where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. Models and solution approaches proposed so far are surveyed and conceptually compared. Two different approaches have been selected to perform a series of computational comparisons: an evolutionary technique comprising a genetic algorithm and its memetic version, and a decomposition and relaxation approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper studies the use of different population structures in a Genetic Algorithm (GA) applied to lot sizing and scheduling problems. The population approaches are divided into two types: single-population and multi-population. The first type has a non-structured single population. The multi-population type presents non-structured and structured populations organized in binary and ternary trees. Each population approach is tested on lot sizing and scheduling problems found in soft drink companies. These problems have two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot sizing and scheduling of raw materials in tanks and products in lines. Computational results are reported allowing determining the better population structure for the set of problem instances evaluated. Copyright 2008 ACM.
Resumo:
This paper presents a nonlinear model with individual representation of plants for the centralized long-term hydrothermal scheduling problem over multiple areas. In addition to common aspects of long-term scheduling, this model takes transmission constraints into account. The ability to optimize hydropower exchange among multiple areas is important because it enables further minimization of complementary thermal generation costs. Also, by considering transmission constraints for long-term scheduling, a more precise coupling with shorter horizon schedules can be expected. This is an important characteristic from both operational and economic viewpoints. The proposed model is solved by a sequential quadratic programming approach in the form of a prototype system for different case studies. An analysis of the benefits provided by the model is also presented. ©2009 IEEE.
Resumo:
Computational grids allow users to share resources of distributed machines, even if those machines belong to different corporations. The scheduling of applications must be performed aiming at performance goals, and focusing on choose which processes can have access to specif resources, and which resources. In this article we discuss aspects of scheduling of application in grid computing environment. We also present a tool for scheduling simulation along with test scenarios and results.
Resumo:
This paper proposes a tabu search approach to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). It is a real-world problem, often found in soft drink companies, where the production process has two integrated levels with decisions concerning raw material storage and soft drink bottling. Lot sizing and scheduling of raw materials in tanks and products in bottling lines must be simultaneously determined. Real data provided by a soft drink company is used to make comparisons with a previous genetic algorithm. Computational results have demonstrated that tabu search outperformed genetic algorithm in all instances. Copyright 2011 ACM.