956 resultados para Radioactive pollution of water
Resumo:
120
Resumo:
Short rotation willow coppice (SRWC) treatment of biosolids is limited by the oversupply of biosolid derived phosphorus; this can lead to eventual losses of phosphorus to water. Water treatment residuals (WTR), a by-product of potable water treatment, have been identified as a viable soil amendment for mitigation of phosphorus loss. WTR exploit the capacity of internally held aluminium oxide-hydroxide complexes to immobilise labile phosphorus. However indiscriminate additions to plots can result in inadequate control or excessive immobilization of soluble P, leading to crop deficiencies. Four commercially grown common willow (Salix) genotypes (Terra Nova, Endeavour, Resolution and Tora) were grown in soil amended with WTR at five different application rates (0, 10, 25, 50 and 100 tonne ha-1 air-dry basis) in a glasshouse pot experiment. The effects of application rates on plant yields, tissue P concentrations, P uptake and soil labile P availability were measured. Results indicate labile P was reduced with increasing WTR application rates, without any negative agronomic impacts.
Resumo:
Burning seaweed to produce kelp, valued for its high potash and soda content, was formerly a significant industry in remote coastal areas of Scotland and elsewhere. Given the high concentrations of arsenic in seaweeds, up to 100 mg kg(-1), this study investigates the possibility that the kelp industry caused arsenic contamination of these pristine environments. A series of laboratory-scale seaweed burning experiments was conducted, and analysis of the products using HPLC ICP-MS shows that at least 40% of the arsenic originally in the seaweed could have been released into the fumes. The hypothesis that the burning process transforms arsenic from low toxicity arsenosugars in the original seaweeds (Fucus vesiculosus and Laminaria digitata) to highly toxic inorganic forms, predominantly arsenate, is consistent with As speciation analysis results. A field study conducted on Westray, Orkney, once a major centre for kelp production, shows that elevated arsenic levels (10.7+/-3.0 mg kg(-1), compared to background levels of 1.7+/-0.2 mg kg(-1)) persist in soils in the immediate vicinity of the kelp burning pits. A model combining results from the burning experiments with data from historical records demonstrates the potential for arsenic deposition of 47 g ha(-1) year(-1) on land adjacent to the main kelp burning location on Westray, and for arsenic concentrations exceeding current UK soil guideline values during the 50 year period of peak kelp production.
Resumo:
Access to potable water is frequently said to be the defining world crisis of the twenty-first century. The argument is usually framed in terms of either direct environmental constraints or various totalistic views of how the political determines outcomes. There is little or no scope for the agency of practical politics. Both physical and human geographers tend to be dismissive of the possibilities of democratic politics ever resolving crises such as those of the geography of water provision, in part because of views of scientific expertise that devalue popular participation in decisions about technical matters such as water quality and distribution. Such dismissal also has much to do with a more generalized denigration of politics. Politics (the art of political deliberation, negotiation, and compromise) needs defending against its critics and many of its practitioners. Showing how politics is at work around the world in managing water problems and identifying the challenges that water problems pose for politics provides a retort to those who can only envisage inevitable destruction or a totalistic political panacea as the outcomes of the crisis of the century.
Resumo:
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
Resumo:
CO and C3H6 oxidation have been carried out in the absence and presence of water over a Pd/Al2O3catalyst. It is clear that water promotes CO and, as a consequence, C3H6oxidation takes place at muchlower temperatures compared with the dry feed. The significant increase in the catalyst’s activity withrespect to CO oxidation is not simply associated with changes in surface concentration as a result ofcompetitive adsorption effects. Utilising18O2as the reactant allows the pathways whereby the oxidationdue to gaseous dioxygen and where the water activates the CO and C3H6to be distinguished. In thepresence of water, the predominant pathway is via water activation with C16O2and C16O18O being themajor species formed and oxidation with dioxygen plays a secondary role. The importance of wateractivation is further supported by the significant decrease in its effect when using D2O versus H2O.
Resumo:
This study uses a discrete choice experiment (DCE) to elicit willingness to pay estimates for changes in the water quality of three rivers. As many regions the metropolitan region Berlin-Brandenburg struggles to achieve the objectives of the Water Framework Directive until 2015. A major problem is the high load of nutrients. As the region is part of two states (Länder) and the river sections are common throughout the whole region we account for the spatial context twofold. Firstly, we incorporate the distance between each respondent and all river stretches in all MNL and RPL models, and, secondly, we consider whether respondents reside in the state of Berlin or Brandenburg. The compensating variation (CV) calculated for various scenarios shows that overall people would significantly benefit from improved water quality. The CV measures, however, also reveal that not considering the spatial context would result in severely biased welfare measures. While the distance decay effect lowers CV, state residency is connected to the frequency of status quo choices and not accounting for residency would underestimate possible welfare gains in one state. Another finding is that the extent of the market varies with respect to attributes (river stretches) and attribute levels (water quality levels).
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
Arsenic contamination of rice plants by arsenic-polluted irrigation groundwater could result in high arsenic concentrations in cooked rice. The main objective of the study was to estimate the total and inorganic arsenic intakes in a rural population of West Bengal, India, through both drinking water and cooked rice. Simulated cooking of rice with different levels of arsenic species in the cooking water was carried out. The presence of arsenic in the cooking water was provided by four arsenic species (arsenite, arsenate, methylarsonate or dimethylarsinate) and at three total arsenic concentrations (50, 250 or 500 mu g l(-1)). The results show that the arsenic concentration in cooked rice is always higher than that in raw rice and range from 227 to 1642 mu g kg(-1). The cooking process did not change the arsenic speciation in rice. Cooked rice contributed a mean of 41% to the daily intake of inorganic arsenic. The daily inorganic arsenic intakes for water plus rice were 229, 1024 and 2000 mu g day(-1) for initial arsenic concentrations in the cooking water of 50, 250 and 500 g arsenic l(-1), respectively, compared with the tolerable daily intake which is 150 mu g day(-1).
Resumo:
We present a first principles molecular dynamics (FPMD) study of the interaction of low energy, positively charged, carbon (C+) projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon ion at an initial energy of 11 eV and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the neutral isoformyl radical, COH, and carbon monoxide, CO, are the dominant products of these reactions. All these reactions are accompanied by the transfer of a proton from the reacting water molecule to the ice, where it forms a hydronium ion. We find that COH is formed either via a direct, "knock-out", mechanism following the impact of the C+ projectile upon a water molecule or by creation of a COH_2^+ intermediate. The direct mechanism is more prominent at higher energies. CO is generally produced following the dissociation of COH. More frequent production of the formyl radical, HCO, is observed here than in gas phase calculations. A less commonly occurring product is the dihydroxymethyl, CH(OH)_2, radical. Although a minor result, its existence gives an indication of the increasing chemical complexity which is possible in such heterogeneous environments.
Resumo:
We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase. The model is applied to six low index titania surfaces, with and without oxygen vacancies and adsorbed water molecules, both in dissociated and non-dissociated states. Finally, we present the results of molecular dynamics simulation of an anatase cluster with a number of adsorbed water molecules and discuss the role of edge and corner atoms of the cluster. (C) 2014 AIP Publishing LLC.
Resumo:
The kelp Laminaria hyperborea is a dominant component of the subtidal nearshore ecosystem and is subjected to a heterogeneous wave and current climate. Water motion is known to influence physiological processes in macroalgae such as photosynthesis and nutrient uptake attributed to mass-transfer limitation. The study attempts to establish the effect of water motion on the growth rates of blades and elongation rates of the stipes of L. hyperborea at adjacent wave-exposed and wave-sheltered locations over a 12month period from field observations. The observations were supported by detailed physical and chemical measurements (light, temperature, seawater nutrient concentrations and hydrodynamics) and of tissue carbon and nitrogen concentrations together with δ13carbon. Despite a 30% difference in the root mean square of the velocity (Velrms) between the two survey locations, there was no evidence to suggest that water motion had any direct influence on the growth rates of either the blades or elongation of stipes of L. hyperborea. No significant differences were observed between either environmental or plant physiological variables between the sheltered and exposed locations. Using an integral velocity parameter (Velrms) the present study also highlighted the importance of the tidally induced current component of water flow in the subtidal zone.