872 resultados para Radio in propaganda.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central scheduling problem in wireless communications is that of allocating resources to one of many mobile stations that have a common radio channel. Much attention has been given to the design of efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions depend on the channel conditions reported by each mobile. The BS is the only entity taking decisions in this framework. The decisions are based on the reports of mobiles on their radio channel conditions. In this paper, we study the scheduling problem from a game-theoretic perspective in which some of the mobiles may be noncooperative or strategic, and may not necessarily report their true channel conditions. We model this situation as a signaling game and study its equilibria. We demonstrate that the only Perfect Bayesian Equilibria (PBE) of the signaling game are of the babbling type: the noncooperative mobiles send signals independent of their channel states, the BS simply ignores them, and allocates channels based only on the prior information on the channel statistics. We then propose various approaches to enforce truthful signaling of the radio channel conditions: a pricing approach, an approach based on some knowledge of the mobiles' policies, and an approach that replaces this knowledge by a stochastic approximations approach that combines estimation and control. We further identify other equilibria that involve non-truthful signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate evolution of quantum correlations in ensembles of two-qubit nuclear spin systems via nuclear magnetic resonance techniques. We use discord as a measure of quantum correlations and the Werner state as an explicit example. We, first, introduce different ways of measuring discord and geometric discord in two-qubit systems and then describe the following experimental studies: (a) We quantitatively measure discord for Werner-like states prepared using an entangling pulse sequence. An initial thermal state with zero discord is gradually and periodically transformed into a mixed state with maximum discord. The experimental and simulated behavior of rise and fall of discord agree fairly well. (b) We examine the efficiency of dynamical decoupling sequences in preserving quantum correlations. In our experimental setup, the dynamical decoupling sequences preserved the traceless parts of the density matrices at high fidelity. But they could not maintain the purity of the quantum states and so were unable to keep the discord from decaying. (c) We observe the evolution of discord for a singlet-triplet mixed state during a radio-frequency spin-lock. A simple relaxation model describes the evolution of discord, and the accompanying evolution of fidelity of the long-lived singlet state, reasonably well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report our search for and a possible detection of periodic radio pulses at 34.5 MHz from the Fermi Large Area Telescope pulsar J1732-3131. The candidate detection has been possible in only one of the many sessions of observations made with the low-frequency array at Gauribidanur, India, when the otherwise radio weak pulsar may have apparently brightened many folds. The candidate dispersion measure along the sight line, based on the broad periodic profiles from �20min of data, is estimated to be 15.44 ± 0.32 pccc -1. We present the details of our periodic and single-pulse search, and discuss the results and their implications relevant to both, the pulsar and the intervening medium. © 2012 RAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically generated spin polarized electrons in bulk n-type Ge samples have been detected by using a radio-frequency modulation technique. Using the Hanle effect in an external magnetic field, the spin lifetime was measured as a function of temperature in the range 90 K to 180 K. The lifetime decreases with increasing temperature from similar to 5 ns at 100 K to similar to 2 ns at 180 K. We show that the temperature dependence is consistent with the Elliott-Yafet spin relaxation mechanism R. J. Elliot, Phys. Rev. 96, 266 (1954)]. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4772500]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6 `' angular resolution and 72 mu Jy beam(-1) rms noise. The images (centered at R. A. 00(h)35(m)00(s), decl. -67 degrees 00'00 `' and R. A. 00(h)59(m)17(s), decl. -67.00'00 `', J2000 epoch) cover 8.42 deg(2) sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50 `'. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial modulation (SM) and space shift keying (SSK) are relatively new modulation techniques which are attractive in multi-antenna communications. Single carrier (SC) systems can avoid the peak-to-average power ratio (PAPR) problem encountered in multicarrier systems. In this paper, we study SM and SSK signaling in cyclic-prefixed SC (CPSC) systems on MIMO-ISI channels. We present a diversity analysis of MIMO-CPSC systems under SSK and SM signaling. Our analysis shows that the diversity order achieved by (n(t), n(r)) SSK scheme and (n(t), n(r), Theta(M)) SM scheme in MIMO-CPSC systems under maximum-likelihood (ML) detection is n(r), where n(t), n(r) denote the number of transmit and receive antennas and Theta(M) denotes the modulation alphabet of size M. Bit error rate (BER) simulation results validate this predicted diversity order. Simulation results also show that MIMO-CPSC with SM and SSK achieves much better performance than MIMO-OFDM with SM and SSK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In multiuser communication on the uplink, all subscribed users may not be active simultaneously. This leads to sparsity in the activity pattern in the users' transmissions, which can be exploited in the multiuser MIMO receiver at the base station (BS). Because of no transmissions from inactive users, joint detection at the BS has to consider an augmented signal set that includes zero. In this paper, we propose a receiver that exploits this inactivity-induced sparsity and considers the zero-augmented signal set. The proposed receiver is based on Markov Chain Monte Carlo techniques. Near-optimal performance and increased system capacity (in terms of number of users in the system) are demonstrated. For example, a multiuser MIMO system with N = 32 receive antennas at the BS and an user activity factor of 0.2 supports 51 uplink users meeting a QoS of 10(-3) coded bit error rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the problem of influence limitation in the presence of competing campaigns in a social network. Given a negative campaign which starts propagating from a specified source and a positive/counter campaign that is initiated, after a certain time delay, to limit the the influence or spread of misinformation by the negative campaign, we are interested in finding the top k influential nodes at which the positive campaign may be triggered. This problem has numerous applications in situations such as limiting the propagation of rumor, arresting the spread of virus through inoculation, initiating a counter-campaign against malicious propaganda, etc. The influence function for the generic influence limitation problem is non-submodular. Restricted versions of the influence limitation problem, reported in the literature, assume submodularity of the influence function and do not capture the problem in a realistic setting. In this paper, we propose a novel computational approach for the influence limitation problem based on Shapley value, a solution concept in cooperative game theory. Our approach works equally effectively for both submodular and non-submodular influence functions. Experiments on standard real world social network datasets reveal that the proposed approach outperforms existing heuristics in the literature. As a non-trivial extension, we also address the problem of influence limitation in the presence of multiple competing campaigns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Radio Interference (RI) from electric power transmission line hardware, if not controlled, poses serious electromagnetic interference to system in the vicinity. The present work mainly concerns with the RI from the insulator string along with the associated line hardware. The laboratory testing for the RI levels are carried out through the measurement of the conducted radio interference levels. However such measurements do not really locate the coronating point, as well as, the mode of corona. At the same time experience shows that it is rather difficult to locate the coronating points by mere inspection. After a thorough look into the intricacies of the problem, it is ascertained that the measurement of associated ground end currents could give a better picture of the prevailing corona modes and their intensities. A study on the same is attempted in the present work. Various intricacies of the problem,features of ground end current pulses and its correlation with RI are dealt with. Owing to the complexity of such experimental investigations, the study made is not fully complete nevertheless it seems to be first of its kind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the underlay mode of cognitive radio, secondary users are allowed to transmit when the primary is transmitting, but under tight interference constraints that protect the primary. However, these constraints limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which exploit spatial diversity with less hardware, help improve secondary system performance. We develop a novel and optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained multiple-input-single-output secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gain of the channel from the secondary transmit antenna to the primary receiver and from the secondary transmit antenna to the secondary receive antenna. We also propose a simpler, tractable variant of the optimal rule that performs as well as the optimal rule. We then analyze its SEP with L transmit antennas, and extensively benchmark it with several heuristic selection rules proposed in the literature. We also enhance these rules in order to provide a fair comparison, and derive new expressions for their SEPs. The results bring out new inter-relationships between the various rules, and show that the optimal rule can significantly reduce the SEP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been an upsurge of research interest in cooperative wireless communications in both academia and industry. This article presents a simple overview of the pivotal topics in both mobile station (MS)- and base station (BS)- assisted cooperation in the context of cellular radio systems. Owing to the ever-increasing amount of literature in this particular field, this article is by no means exhaustive, but is intended to serve as a roadmap by assembling a representative sample of recent results and to stimulate further research. The emphasis is initially on relay-base cooperation, relying on network coding, followed by the design of cross-layer cooperative protocols conceived for MS cooperation and the concept of coalition network element (CNE)-assisted BS cooperation. Then, a range of complexity and backhaul traffic reduction techniques that have been proposed for BS cooperation are reviewed. A more detailed discussion is provided in the context of MS cooperation concerning the pros and cons of dispensing with high-complexity, power-hungry channel estimation. Finally, generalized design guidelines, conceived for cooperative wireless communications, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency hopping communications, used in the military present significant opportunities for spectrum reuse via the cognitive radio technology. We propose a MAC which incorporates hop instant identification, and supports network discovery and formation, QOS Scheduling and secondary communications. The spectrum sensing algorithm is optimized to deal with the problem of spectral leakage. The algorithms are implemented in a SDR platform based test bed and measurement results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.