998 resultados para Radiation injuries
Resumo:
This review presents the latest advances in the application of microwave energy to analytical chemistry. The fundamental principles of microwave field interaction with the matter are presented and their significance for the chemist is discussed, followed by the basic principles of microwave equipment construction and operation. Examples of the techniques that utilized microwave energy for digestion, extraction, chemical reaction, preconcentration, and desorption of the analytical sample are presented. A separate section describes the examples of usage of microwave technology in catalysis, environmental, and nuclear chemistry and engineering.
Resumo:
The surface solar radiation (SSR) is of great importance to bio-chemical cycle and life activities. However, it is impossible to observe SSR directly over large areas especially for rugged surfaces such as the Qinghai-Tibet Plateau. This paper presented an improved parameterized model for predicting all-sky global solar radiation on rugged surfaces using Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products and Digital Elevation Model (DEM). The global solar radiation was validated using 11 observations within the plateau. The correlation coefficients of daily data vary between 0.67-0.86, while those of the averages of 10-day data are between 0.79-0.97. The model indicates that the attenuation of SSR is mainly caused by cloud under cloudy sky, and terrain is an important factor influencing SSR over rugged surfaces under clear sky. A positive relationship can also be inferred between the SSR and slope. Compared with horizontal surfaces, the south-facing slope receives more radiation, followed by the west- and east-facing slopes with less SSR, and the SSR of the north-facing slope is the least.
Resumo:
Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.
Resumo:
Polybutadiene latex (PBL) vulcanization induced by Co-60 radiation and the influence of dose on crosslinking were investigated. Morphology and particle size distribution were examined by AFM and a particle size analyzer. The casting films were characterized for their swelling and mechanical properties as a function of dose.
Resumo:
The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.
Resumo:
In this article, a simple and novel photochemical synthesis of different gold nanostructures is proposed using solar radiation. This method is rapid, convenient and of low cost, and can be performed under ambient conditions. By adjusting the concentration of sodium acetate (NaAc), different morphologies of the products can be easily obtained. Without NaAc, the products obtained are mainly polyhedral gold particles; lower concentration of NaAc (0.05 and 0.1 M) accelerates the formation of flowerlike gold nanostructures; while higher concentration of NaAc (0.5 M) facilitates the formation of a variety of gold nanowires and nanobelts. It is found that the morphology change of gold nanaostructures is the result of the synergistic effect of poly(diallyl dimethylammonium) chloride (PDDA), Ac- ions, and the pH value. In addition, the different gold nanostructures thus obtained were used as substrates for surface-enhanced Raman scattering (SERS) with p-aminothiophenol (p-ATP) as the probe molecule.
Resumo:
BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.
Resumo:
Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.
Resumo:
Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.
Resumo:
CdS nanocrystals were synthesized through AOT/heptane/H2O reverse micelles. New stable reverse mikelles were obtained by adding an appropriate amount of acrylic. acid monomer, CdS nanocrystal-poly(acrylic acid) composites were synthesized by gamma-radiation with a reverse mi'celle route at room temperature. The US nanocrystals with narrow size distribution were, found to be dispersed homogeneously in the poly(acrylic acid) matrix. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The electrical resistivity of low-density polyethylene/carbon black composites irradiated by Co-60 gamma-rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure-specific volume-temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (Sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and Sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy.
Resumo:
Radiation crosslinking of carboxymethylcellulose (CMC) with a degree of substitution (DS) from 0.7 to 2.2 was the subject of the current investigation. CMC was irradiated in solid-state and aqueous solutions at various irradiation doses. The DS and the concentration of the aqueous solution had a remarkable affect on the crosslinking of CMC. Irradiation of CMC, even with a high DS, 2.2 in solid state, and a low DS, 0.7 in 10% aqueous solution, resulted in degradation. However, it was found that irradiation of CMC with a relatively high DS, 1.32, led to crosslinking in a 5% aqueous solution, and 20% CMC gave the highest gel fraction. CMC with a DS of 2.2 induced higher crosslinking than that with a DS of 1.32 at lower doses with the same concentration. Hence, it was apparent that a high DS and a high concentration in an aqueous solution were favorable for high crosslinking of CMC. It is assumed that; high radiation crosslinking of CMC was induced by the increased mobility of its molecules in water and by the formation of CMC radicals from the abstraction of H atoms from macromolecules in the intermediate products of water radiolysis. A preliminary biodegradation study confirmed that crosslinked CMC hydrogel can be digested by a cellulase enzyme. (C) 2000 John Wiley & Sons, Inc.